ویروس تریستزای مرکبات (Citrus tristeza virus-CTV) یکی از بیماریهای مهم درختان مرکبات در اغلب مرکبات کاریهای ایران است. در این تحقیق توالی کامل ویروس تریستزای مرکبات از دو منطقه مرکبات خیز استان مازندران و استان فارس تعیین و برخی صفات بیولوژیکی و مولکولی آنها با یکدیگر مقایسه شده است. 56 درصد از نمونههای جمعآوری شده از استان مازندران و 32 درصد نمونههای تهیه شده از استان فارس در آزمون زنجیرهای پلیمراز آلوده به ویروس تریستزای مرکبات بودند. علایم CTV در نمونههای مرکبات استان مازندران کوتولگی خفیف تا شدید، سرخشکیدگی، زردی، زردی رگبرگ و زوال سریع بود در حالیکه در نمونههای استان فارس علایم CTV، کوتولگی، سبزخشکیدگی، زردی، و سرخشکیدگی شاخهها بود. سه ماه پس از مایهزنی نیز علائم کوتولگی شدید، رگبرگ روشنی، زردی و ریزبرگی در نهالهای مایهزنی شده با جدایههای استان مازندران و علایم کوتولگی خفیف، رگبرگ روشنی، زردی و ریزبرگی در نهالهای نارنج بذری مایهزنی شده با جدایههای استان فارس ایجاد شد. از درختان مرکبات آلوده به تریستزا از استانهای فارس و مازندران نمونهبرداری و از آنها کتابخانه sRNA تهیه و توالییابی شدند. نتایج نشان داد که طول ژنوم کامل بازسازی شده برای جدایههای IR-North1، IR-North2، IR-South1 و IR-South2 بهترتیب 19296، 19302، 19252 و 19251 نوکلئوتید است و در سطح نوکلئوتیدی با سایر جدایههای CTV موجود در بانک ژن بین 5/77-2/95 درصد شباهت داشتند. بررسی توالی پروتئینها نشاندهنده وجود 280 جایگزینی در 33 موتیف در جدایههای توالییابی شده CTV بود. کمترین تغییرات در جدایه IR-North1 با پنج جایگزینی بود. در جدایههای IR-North2، IR-South1 و IR-South2 بهترتیب 97، 85 و 93 جایگزینی اتفاق افتاده بود. بیشترین جایگزینی در چارچوبهای ژنی ORF1a و p61 بود. تعیین سویه جدایهها با همانندسازی و هضم مجازی و همردیفسازی ناحیه بین ژنهای پوشش پروتئینی کوچک (Cpm) و پوشش پروتئینی نشان داد که جدایه IR-North1 مشابه نژادهای مولد زوال سریع و سویه T36 و جدایههای IR-South2، IR-North2 و IR-South1 از نژادهای مولد ساقه آبلهای و زردی نهالچه و بهترتیب مشابه با سویه T3، SY و T318A هستند. در درخت فیلوژنی ترسیم شده بر اساس طول کامل ژنوم نیز سه جدایه IR-North2 و IR-South1 و IR-South2، در گروه VT و جدایه IR-North 1 در گروه T36 قرار گرفتند. همچنین بررسی وقوع نوترکیبی احتمالی در جدایههای ایرانی نشان داد که جدایههای IR-North1، IR-North2 و IR-South1 در ژنهای رپلیکاز و P65 نوترکیب هستند. نتایج بررسی علائم و توالی کامل چهار جدایه بدست آمده نشان داد که دو جدایه بدست آمده از استان مازندران از لحاظ نوع علائم و جایگاه فیلوژنی از هم متفاوت هستند ولی دو جدایه استان فارس از نظر فیلوژنی و ژنوتیپی با یکدیگر قرابت دارند.
Ahmadi, S., Afsharifar, A., Niazi, A., Sadeghi, M., & Izadpanah, K. )2006(. Distribution and analysis of genetic diversity of Citrus tristeza virus (CTV) isolates in Kerman Province. 17th Iranian Plant Protection Congress, 289.(In Persian with English abstract)
Alavi, A., Khatabi, B., & Salekdeh, G.H. (2005). Comparison of biologically distinct isolates of Citrus tristeza virus from Iran using major coat protein seq uences. AustralianPlant Pathology,34(4), 577-582. https://doi.org/10.1071/AP05079
Albiach-Martı́, M.R., Guerri, J., Cambra, M., Garnsey, S.M., & Moreno, P. (2000). Differentiation of Citrus tristeza virus isolates by serological analysis of p25 coat protein peptide maps. Journal of Virological Methods, 88(1), 25-34. https://doi.org/10.1016/s0166-0934(00)00165-8
Albiach-Marti, M.R., Mawassi, M., Gowda, S., Satyanarayana, T., Hilf, M.E., Shanker, S., Almira, E.C., Vives, M.C., Lopez, C., Guerri, J., Flores, R., Moreno, P., Garnsey, S.M., & Dawson, W.O. (2000b). Sequences of Citrus tristeza virus separated in time and space are essentially identical. Journal of Virology, 74, 6856-6865. https://doi.org/1128/jvi.74.15.6856-6865.2000
Barzegar, A., Rahimian, H., & Hashemi Sohi, H. (2010). Comparison of the minor coat protein gene sequences of aphid-transmissible and-nontransmissible isolates of Citrus tristeza virus. Journal of General Plant Pathology, 76, 143-151. https://doi.org/1007/s10327-009-0216-7
Barzegar, A., Sohi, H.H., & Rahimian, H. (2006). Characterization of Citrus tristeza virus isolates in northern Iran. Journal of General Plant Pathology,72, 46-51. https://doi.org/1007/s10327-005-0249-5
Bester, R., Cook, G., & Maree, H.J. (2021). Citrus tristeza virus genotype detection using high-throughput sequencing. Viruses,13, 2-168. https://doi.org/10.3390/v13020168
Biswas, K.K., Tarafdar, A., & Sharma, S.K. (2012). Complete genome sequence of mandarin decline Citrus tristeza virus of the northeastern Himalayan hill region of India: comparative analyses determine recombinant. Archives of Virology, 157, 579–583. https://doi.org/10.1007/s00705-011-1165-y
Carra, A.M., Gambino, G., & Schubert, A. (2007) A cetyltrimethylammonium bromide-based method to extract low-molecular-weight RNA from polysaccharide-rich plant tissues. Biochemistry,360, 318. https://doi.org/10.1016/j.ab.2006.09.022
Cheng, X.F., Wu, X.Y., Wang, H.Z., Sun, Y.Q., Qian, Y.S., & Luo, L. (2012). High codon adaptation in Citrus tristeza virus to its citrus host. Virology Journal, 9, 113. https://doi.org/1186/1743-422X-9-113
Coetzee, B., Freeborough, M.J., Maree, H.J., Celton, J.M., Rees, D.J.G., & Burger, J.T. (2010). Deep sequencing analysis of viruses infecting grapevines: virome of a vineyard. Virology, 400(2), 157-163. https://doi.org/11016/j.virol.2010.01.023
Cook, G., van Vuuren, S.P., Breytenbach, J.H., Steyn, C., Burger, J.T., & Maree, H.J. (2016). Characterization of Citrus tristeza virus single-variant sources in grapefruit in greenhouse and field trials. Plant Disease, 100(11), 2251-2256. https://doi.org/1094/PDIS-03-16-0391-RE
Cowell, S.J., Harper, S.J., & Dawson, W.O. (2016). Some like it hot: Citrus tristeza virus strains react differently to elevated temperature. Archives of Virology, 161, 3567-3570. https://doi.org/1007/s00705-016-3083-5
Dawson, W.O., Bar-Joseph, M., Garnsey, S.M., & Moreno, P. (2015). Citrus tristeza virus: making an ally from an enemy. Annual Review of Phytopathology,5, 137-155. https://doi.org/1146/annurev-phyto-080614-120012
Ebrahim-Nesbat, F., & Nienhaus, F. (1978). Occurrence of Citrus tristeza virus in Iran/Auftreten von Citrus-Tristeza virus in Iran. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz/Journal of Plant Diseases and Protection, 308-312.
Flores, R., Ruiz-Ruiz, S., Soler, N., Sánchez-Navarro, J., Fagoaga, C., López, C., Navarro, L., Moreno, P., & Peña, L. (2013). Citrus tristeza virus p23: a unique protein mediating key virus–host interactions. Frontiers in Microbiology,4, 98. https://doi.org/3389/fmicb.2013.00098
Gottwald, T.R., Garnsey, S.M., & Borbón, J. (1998). Increase and patterns of spread of Citrus tristeza virus infections in Costa Rica and the Dominican Republic in the presence of the brown citrus aphid, Toxoptera citricida. Phytopathology,88, 621-636. https://doi.org/11094/PHYTO.1998.88.7.621
Gushchin, V.A., Karlin, D.G., Makhotenko, A.V., Khromov, A.V., Erokhina, T.N., Solovyev, A.G., Morozov, S.Y., & Agranovsky, A.A. (2017). A conserved region in the Closterovirus 1a polyprotein drives extensive remodeling of endoplasmic reticulum membranes and induces motile globules in NicotianabenthamianaVirology, 502, 106-113. https://doi.org/10.1016/j.virol.2016.12.006
Harper, S.J., Dawson, T.E., & Pearson, M.N. (2009). Complete genome sequences of two distinct and diverse Citrus tristeza virus isolates from New Zealand. Archives of Virolology,154, 1505–1510.
Harper, S.J., & Pearson, M.N. (2015). Citrus tristeza virus strains present in New Zealand and the South Pacific. Journal of Citrus Pathology, 2, 1. https://doi.org/1007/s00705-009-0456-z
Harper, S.J. (2013). Citrus tristeza virus: evolution of complex and varied genotypic groups. Frontiers in Microbiology, 4, 93. https://doi.org/10.3389/fmicb.2013.00093
Herrera-Isidrón, L., Ochoa-Sánchez, J.C., Rivera-Bustamante, R., & Martinez- Soríano, J.P. (2009). Sequence diversity on four ORFs of Citrus tristeza virus correlates with pathogenicity. Virology Journal, 6, 116. https://doi.org/10.1186/1743-422X-6-116
Huang, Y.W., Hu, C.C., Liou, M.R., Chang, B.Y., Tsai, C.H., & Meng, M. (2012). Hsp90 interacts specifically with viral RNA and differentially regulates replication initiation of Bamboo mosaic virus and associated satellite RNA. PLoS Pathology, 8, e1002726. https://doi.org/10.1371/journal.ppat.1002726
Iftikhar, Y., Abbas, M., Mubeen, M., Zafar-ul-Hye, M., Bakhtawar, F., Bashir, S., Sajid, A., & Shabbir, M.A., (2021). Overview of strain characterization in relation to serological and molecular detection of Citrus tristeza Closterovirus. Phyton, 90(4), 1063. https://doi.org/10.32604/phyton.2021.015508
Iki, T., Yoshikawa, M., Nishikiori, M., Jaudal, M.C., Matsumoto Yokoyama, E., & Mitsuhara, I. (2010). In vitro assembly of plant RNA-induced silencing complexes facilitated by molecular chaperone HSP90. Moecular Cell, 39, 282–291. https://doi.org/1016/j.molcel.2010.05.014
Jo, Y., Choi, H., Kim, S.M., Kim, S.L., Lee, B.C., & Cho, W.K. (2017). The pepper virome: natural co-infection of diverse viruses and their quasispecies. BMC Genomics,1, 1-12. https://doi.org/1186/s12864-017-3838-8
Jo, Y., Choi, H., Kim, S.M., Kim, S.L., Lee, B.C., & Cho, W.K. (2016). Integrated analyses using RNA-Seq data reveal viral genomes, single nucleotide variations, the phylogenetic relationship, and recombination for Apple stem grooving virus. BMC Genomics,17, 1,1-12. https://doi.org/1186/s12864-016-2994-6
Kashif, M., Pietilä, S., Artola, K., Jones, R.A.C., Tugume, A.K., Mäkinen, V., & Valkonen, J.P.T. (2012). Detection of viruses in sweetpotato from Honduras and Guatemala augmented by deep-sequencing of small-RNAs. Plant Disease, 96(10), 1430-1437. https://doi.org/1094/PDIS-03-12-0268-RE
Lbida, B., Bennani, A., Serrhini, M.N., & Zemzami, M. (2005). Biological, serological and molecular characterization of three isolates of Citrus tristezaclosterovirus introduced into Morocco. EPPO Bulletin, 35(3), 511-517. https://doi.org/1111/j.1365-2338.2005.00895.x
Li, R., Gao, S., Hernandez, A.G., Wechter, W.P., Fei, Z., & Ling, K.S. (2012). Deep sequencing of small RNAs in tomato for virus and viroid identification and strain differentiation. PloS One, 7, e37127. https://doi.org/10.1371/journal.pone.0037127
Matsumura, E.E., Coletta-Filho, H.D., Nouri, S., Falk, B.W., Nerva, L., Oliveira, T.S., Dorta, S.O., & Machado, M.A. (2017). Deep sequencing analysis of RNAs from citrus plants grown in a citrus sudden death-affected area reveals diverse known and putative novel viruses. Viruses, 9(4), 92. https://doi.org/3390/v9040092.
Melzer, M.J., Borth, W.B., Sether, D.M., Ferreira, S., Gonsalves, D., & Hu, J.S. (2010). Genetic diversity and evidence for recent modular recombination in Hawaiian Citrus tristeza virus. Virus Genes, 40, 111-118. https://doi.org/11007/s11262-009-0409-3
Moreno, P., Ambros, S., Albiach-Marti, M.R., Guerri, J., & Peoa, L. (2008). Citrus tristeza virus: a pathogen that changed the course of the citrus industry Molecular Plant Patholology, 9, 251-268. https://doi.org/1111/j.1364-3703.2007.00455.x
Pais da Cunha, A.T., Chiumenti, M., Ladeira, L.C., Abou Kubaa, R., Loconsole, G., Pantaleo, V., & Minafra, A. (2021). High throughput sequencing from Angolan citrus accessions discloses the presence of emerging CTV strains. Virology Journal, 18(1), 1-8. https://doi.org/1186/s12985-021-01535-x
Pappu, H.R., Pappu, S.S., Kano, T., Koizumi, M., Cambra, M., Moreno, P., & Niblett, C.L. (1995). Mutagenic Analysis and Localization of a Highly Conserved Epitope. Phytopathology, 85, 1311-1315. https://doi.org/1094/Phyto-85-1311
Ramírez-Pool, J.A., Xoconostle-Cázares, B., Calderón-Pérez, B., Ibarra-Laclette, E., Villafán, E., Lira-Carmona, R., & Ruiz-Medrano, R. (2022). Transcriptomic analysis of the host response to mild and severe CTV strains in naturally infected Citrus sinensis orchards. International Journal of Molecular Sciences, 23(5), 2435. https://doi.org/3390/ijms23052435.
Roy, A., & Brlansky, R.H. (2010). Genome analysis of an orange stem pitting Citrus tristeza virus isolate reveals a novel recombinant genotype. Virus Research, 151, 118–130. https://doi.org/1016/j.virusres.2010.03.017
Ruiz-Ruiz, S., Moreno, P., Guerri, J., & Ambrs S. (2006). The complete nucleotide sequence of a severe stem pitting isolate of Citrus tristeza virus from Spain: comparison with isolates from different origins. Archives of Virology, 151, 387–398. https://doi.org/1007/s00705-005-0618-6
Ruiz-Ruiz, S., Navarro, B., Gisel, A., Pena, L., Navarro, L., Moreno, P., Serio, F.D., & Flores, R. (2011). Citrus tristeza virus infection induces the accumulation of viral small RNAs (21–24-nt) mapping preferentially at the 3′-terminal region of the genomic RNA and affects the host small RNA profile. Plant Molecular Biology, 75, 607-619. https://doi.org/1007/s11103-011-9754-4
Saponari, M., & Yokomi, R.K. (2010). Use of the coat protein (CP) and minor CP intergene sequence to discriminate severe strains of Citrus tristeza virus (CTV) in three US CTV isolate collections. In International Organization of Citrus Virologists Conference Proceedings (1957-2010), 17, 17.
Satyanayanana, T., Gowda, S., Ayllón, M.A., & Dawson, W. O. (2004). Closterovirus bipolar virion: evidence for initiation of assembly by minor coat protein and its restriction to the genomic RNA 5´region. Proceeding of National Academic Science. USA, 101, 799-804. https://doi.org/10.1073/pnas.0307747100
Suastika, C., Natsuaki, T., Terui, H., Kano, T., Ieki, H., & Okuda, S. (2001). Nucleotide sequence of Citrus tristeza virus seedling yellows isolate. Journal of General Plant Pathology, 67(1), 73-77. https://doi.org/1007/PL00012992
Turchinovich, A., Surowy, H., Serva, A., Zapatka, M., Lichter, P., & Burwinkel, B. (2014). Capture and Amplification by Tailing and Switching (CATS) An ultrasensitive ligation-independent method for generation of DNA libraries for deep sequencing from picogram amounts of DNA and RNA. RNA biology, 11(7), 817-828. https://doi.org/4161/rna.29304
Vives, M.C., Rubio, L., Lopez, C., Navas-Castillo, J., Albiach-Martí, M.R., Dawson, W.O., Guerri, J., Flores, R., Moreno, P. (1999). The complete genome sequence of the major component of a mild citrus tristeza isolate. Journal of General Virology, 80, 811–816. https://doi.org/1099/0022-1317-80-3-811
Wang, X., Goregaoker, S. P., & Culver, J. N. (2009). Interaction of the Tobacco mosaic virus replicase protein with a NAC domain transcription factoris associated with the suppression of systemic host defenses. Journal of Virology. 83, 9720–9730. https://doi.org/1128/JVI.00941-09
Weng, Z., Barthelson, R., Gowda, S., Hilf, M. E., Dawson, W. O., Galbraith, D. W., & Xiong, Z. (2007). Persistent infection and promiscuous recombination of multiple genotypes of an RNA virus within a single host generate extensive diversity. PLoS One, 2(9), e917. https://doi.org/1371/journal.pone.0000917
Wylie, S. J., Li, H., Saqib, M., & Jones, M. G. (2014). The global trade in fresh produce and the vagility of plant viruses: a case study in garlic. PLoS One, 9 (8), e105044. https://doi.org/1371/journal.pone.0105044
Wu, G.W., Tang, M., Wang, G.P., Wang, C.X., Liu, Y., Yang, F., & Hong, N. (2014). The epitope structure of Citrus tristeza virus coat protein mapped by recombinant proteins and monoclonal antibodies. Virology, 448, 238-246. https://doi.org/1016/j.virol.2013.10.021
Yokomi, R., Selvaraj, V., Maheshwari, Y., Chiumenti, M., Saponari, M., Giampetruzzi, A., Weng, Z., Xiong, Z., & Hajeri, S. (2018). Molecular and biological characterization of a novel mild strain of Citrus tristeza virus in California. Archives of Virology, 163, 1795-1804. https://doi.org/1007/s00705-018-3799-5
Yokomi, R. (2019). CTV vectors and interactions with the virus and host plants. Citrus Tristeza Virus: Methods and Protocols, 29-53. https://doi.org/1007/978-1-4939-9558-5_4.
ارسال نظر در مورد این مقاله