ارزیابی مقاومت و پاسخ بیوشیمیایی ارقام مختلف جو در برهمکنش با نماتد ریشه‌گرهی (Meloidogyne incognita)

نوع مقاله : مقالات پژوهشی

نویسندگان

گروه گیاه‌پزشکی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

نماتد (Meloidogyne incognita) شناخته شده­ترین نماتد ریشه گرهی است که بیش از 2000 گونه­ی میزبانی دارد. در مدیریت نماتدها، استفاده از ارقام مقاوم به دلیل سازگاری با محیط زیست، صرفه­ی اقتصادی و گاهاً عدم امکان پیاده سازی سایر روش­ها در کشورهای در حال توسعه، از جایگاه ویژه­ای برخوردار است. از این رو، ارزیابی مقاومت گیاهان مهم اقتصادی از جمله جو (Hordeum vulgare) جهت جلوگیری از ایجاد خسارت و بررسی برخی تعاملات نماتد با این گیاه ضروری می­نماید. طی این پژوهش، به ارزیابی مقاومت ارقام مختلف جو شامل نیک، نیمروز و زرجو بر پایه­ی فاکتورهای رشدی گیاه (طول، وزن تر و خشک اندام هوایی و ریشه) و شاخص گال نماتد در 60 روز پس از مایه‌زنی پرداخته شد. سپس طی آزمون بیوشیمیایی، فعالیت آنزیم­های سوپراکسید دیسموتاز (SOD)، کاتالاز (CAT) و آسکوربات پراکسیداز (APX) در روزهای صفر، یک، دو، سه و چهار روز پس از مایه زنی اندازه­گیری شد. نتایج نشان داد که دو رقم نیمروز و زرجو با شاخص گال سه به عنوان نسبتاً مقاوم و رقم نیک با شاخص گال چهار به عنوان نسبتاً حساس تعیین شد. بر اساس فاکتورهای رشدی گیاه، نماتد تاثیر منفی بر طول و وزن اندام هوایی و طول ریشه و تاثیر مثبت بر وزن ریشه داشت. آنزیم SOD در ارقام نیک، نیمروز و زرجو به ترتیب در مقادیر 72/2، 91/1 و 15/2 واحد میلی­گرم بر پروتئین در روزهای چهارم، چهارم و سوم پس از مایه زنی، فعالیت حداکثری نشان داد. فعالیت آنزیم فوق، در رقم نیک 42/1 و 25/1 برابر فعالیت بیشینه نیمروز و زرجو تعیین گردید. بین نقاط زمانی صفر، یک و دو با روزهای سوم و چهارم نمونه آلوده در رقم نیک، اختلاف معنی‌داری مشاهده گردید. در دو رقم دیگر، فعالیت آنزیم با شیبی ملایم افزایش یافت. آنزیم CAT در ارقام نیک، نیمروز و زرجو در مقادیر 204/0، 09/0 و 11/0 میکرومول بر دقیقه میلی­گرم پروتئین در روز چهارم پس از مایه‌زنی به پیک رسید. در رقم نیک، برخلاف دو رقم دیگر آنزیم به میزان بیش­تری افزایش یافته و از روز دو تا چهارم شیب تندی داشت. در گیاهان آلوده­ی نیمروز، علیرغم افزایش تدریجی آنزیم، اختلاف معنی داری بین هیچ یک از روز­ها یافت نشد. آنزیم APX در مقادیر 26/0، 27/0 و 24/0 میکرومول بر دقیقه میلی­گرم پروتئین به ترتیب در ارقام نیک، نیمروز و زرجو در روز چهارم به اوج رسید. فعالیت آنزیم نامبرده در سه رقم روند افزایشی داشت. حداکثر فعالیت این آنزیم در نیمروز بوده که به ترتیب 03/1 و 1/1 برابر نیک و زرجو تعیین گردید. در این رقم، روند افزایشی سریع بوده و بین همه نقاط زمانی اختلاف معنی‌داری در سطح 05/0 وجود داشت. احتمالاً نماتد جهت تشکیل سلول غول‌آسا مانع از انتقال بهینه آب و مواد غذایی به اندام هوایی و در نتیجه کاهش رشد آن شده و به دلیل ایجاد گره، موجب افزایش وزن ریشه شده است. فعالیت بیش­تر آنزیم­های فوق در رقم نیک احتمالاً به دلیل برهمکنش سازگاری و ناتوانی گیاه در القای پاسخ فوق حساسیت علیه نماتد صورت گرفته است. بیان کم­تر آنزیم­ها در ارقام نیمروز و زرجو نیز احتمالاًبه دلیل مقاومت نسبی به نماتد می­باشد.

کلیدواژه‌ها

موضوعات


  1. Barbary, A., Djian-Caporalino, C., Palloix, A., & Castagnone-Sereno, P. (2015). Host genetic resistance to root-knot nematodes, Meloidogyne, in solanaceae: from genes to the field. Pest Management Science 71: 1591–1598. https://doi.org/10.1002/ps.4091.
  2. Beers, R.F., & Sizer, I.W. (1952). A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. The Journal of Biological Chemistry 195: 133–140.
  3. Bowler, C., Montagu, M.V., & Inze, D. (1992). Superoxide dismutase and stress tolerance. Physiology and Molecular Biology of Plants 43: 83-116.
  4. Bowler, C., Montagu, M.V., & Inze, D. (2005). Superoxide dismutase and abiotic stress tolerance. Physiology and Molecular Biology of Plants 11(2): 187–198.
  5. Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 2: 248-254.
  6. De Brida, A.L., Da Silva Correia, E.C.S., De Castro, E., Castro, B.M., Cola Zanuncio, J., & Wilcken, S.R.S. (2017). Oat, wheat, and sorghum genotype reactions to Meloidogyne incognita and Meloidogyne javanica. Journal of Nematology 49(4): 386–389. https://doi.org/10.21307/jofnem-2017-086.
  7. Dong, W., Holbrook, C.C., Timper, P., Brenneman, T.B., & Mullinix, B.G. (2007). Comparison of methods for assessing resistance to Meloidogyne arenaria in peanut. Journal of Nematology 39: 169–175.
  8. Du, C., Shen, F., Li, Y., Zhao, Z., Xu, X., Jiang, J., & Li, J. (2021). Effects of salicylic acid, jasmonic acid and reactive oxygen species on the resistance of Solanum peruvianum to Meloidogyne incognita. Scientia Horticulturae https://doi.org/10.1016/j.scienta.2020.109649.
  9. Elling, A.A. (2013). Major emerging problems with minor Meloidogyne Phytopathology 103: 1902-1102. https://doi.org/10.1094/PHYTO-01-13-0019-RVW.
  10. Gheysen, G., & Mitchum, M.G. (2019). Phytoparasitic nematode control of plant hormone pathways. Plant Physiology https://doi.org/1212–1226. 10.1104/pp.18.01067.
  11. Hussain, M.A., Mukhtar, T., & Kayani, M.Z. (2014). Characterization of susceptibility and resistance responses to root-knot nematode (Meloidogyne incognita) infection in okra germplasm. Pakistan Journal of Agricultural Sciences 51: 309–314. https://doi.org/10.1016/j.cropro.2015.12.024.
  12. Hussey, R.S., & Barker, K.R. (1973). A comparison of methods of collecting inocula of Meloidogyne spp. including a new technique. Plant Disease Reports 57: 1025-1028.
  13. Jones, J.D., & Dangl, J.L. (2006). The plant immune system. Nature 444(7117): 323-329. https://doi.org/10.1038/nature05286.
  14. Kar, M., & Mishra, D. (1976). Catalase, peroxidase, and polyphenoloxidase activities during rice leaf senescence. Plant Physiology 57(2): 315–319.
  15. Karajeh, M.R. (2011). Response of wheat, barley and oat cultivars and accessions to Meloidogyne javanica. Nematologia Mediterranea 39: 85–89.
  16. Korayem, A.M., El-Bassioun, H.M.S., El-Monem, A.A.A., & Mohamed, M.M.M. (2012). Physiological and biochemical changes in different sugar beet genotypes infected with root-knot nematode. Acta Physiologiae Plantarum 34(5):1847–1861. https://doi.org/10.1007/s11738-012-0983-1.
  17. Labudda, M., Tokarz, K., Tokarz, B., Muszynska, E., Gietler, M., Gorecka, M., Rozanska, E., Rybarczyk-Plonska, A, Fidler, J., Prabucka, B., Dababat, A.A., & Lewandowski, M. (2020). Reactive oxygen species metabolism and photosynthetic performance in leaves of Hordeum vulgare plants co-infested with Heterodera filipjevi and Aceria tosichella. Plant Cell Reports 39(12): 1719–1741. https://doi.org/10.1007/s00299-020-02600-5.
  18. Langridge, P. (2017). Economic and academic importance of barley. Stein N., and Muehlbauer F. J. (2018). Springer International Publishing AG, part of Springer Nature. pp. 1-8. http://dx.doi.org/10.1007/978-3-319-92528-8_1.
  19. Lightfoot, D.J., Mcgrann, G.R.D., & Able, A.J. (2017). The role of a cytosolic superoxide dismutase in barley–pathogen interactions. Molecular Plant Pathology 18(3): 323–335. https://doi.org/10.1111/mpp.12399.
  20. Mhamdi, A., Queval, G., Chaouch, S., Vanderauwera, S., Van Breusegem, F., & Noctor, G. (2010). Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models. Journal of Experimental Botany 61(15): 4197–4220. https://doi.org/10.1093/jxb/erq282.
  21. Molinari, S. (2011). Natural genetic and induced plant resistance, as a control strategy to plant-parasitic nematodes alternative to pesticides. Plant Cell Reports 30(3): 311–323.
  22. Molinari, S., Fanelli, E., & Leonetti, P. (2014). Expression of tomato salicylic acid (SA)-responsive pathogenesis-related genes in Mi-1-mediated and SA-induced resistance to root-knot nematodes. Molecular Plant Pathology 15(3): 255–264. https://doi.org/10.1111/mpp.12085.
  23. Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology 22: 867-888.
  24. Oliveira, J.T.A., Andrade, N.C., Martins-Miranda, A.S., Soares, A.A., Gondim, D.M.F., Araujo-Filho, J.H., Freire-Filho, F.R., & Vasconcelos, I.M. (2012). Differential expression of antioxidant enzymes and PR-proteins in compatible and incompatible interactions of cowpea (Vigna unguiculata) and the root-knot nematode Meloidogyne incognita. Plant Physiology and Biochemistry 51: 145–152. https://doi.org/10.1016/j.plaphy.2011.10.008.
  25. Patric, P.J., Simon, R.W., Ivan, G.G., & Martin, C. (2013). Chemical control of nematodes. Plant nematology. Perry R., and Moens M. (2013). CAB International. pp. 459-479.
  26. Quesenberry, K.H., Baltensperger, D.D., Dunn, R.A., Wilcox, C.J., & Hardy, S.R. (1989). Selection for tolerance to root-knot nematodes in red clover to evaluate. Crop Science 65: 62–65.
  27. Roland, N.P., & Maurice, M. (2015). Introduction to plant-parasitic nematodes; modes of parasitism. Genomics and molecular genetics of plant-nematode interactions. Jones J., Gheysen G., and Fenoll C. Springer Science+Business Media B.V. 1-17. https://doi.org/10.1007/978-94-007-0434-3_1.
  28. Rao, M.S.S., Bhagsari, A.S., & Mohamad, A.I. (2002). Fresh green seed yield and seed nutritional traits of vegetable soybean genotypes. Crop Science 42: 1950–1958. https://doi.org/10.2135/cropsci2002.1950.
  29. Scandalios, J.G. (2005). Oxidative stress: molecular perception and transduction of signals. Brazilian Journal of Medical and Biological Research 38(7): 995–1014. https://doi.org/10.1590/s0100-879x2005000700003.
  30. Schatzman, S.S., & Culotta,V.C. (2018). Chemical warfare at the microorganismal level: a closer look at the superoxide dismutase enzymes of pathogens. ACS Infectious Diseases 4: 893–903. https://doi.org/10.1021/acsinfecdis.8b00026.
  31. Sharma, P., Jha, A.B., Dubey, R.S., & Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany 2012: 1–26. https://doi.org/10.1155/2012/217037.
  32. Shi, Q., Mao, Z., Zhang, X., Ling, J., Lin, R., Zhang, X., Liu, R., Wang, Y., Yang, Y., Cheng, X., & Xie, B. (2018). The novel secreted Meloidogyne incognitaeffector MiISE6 targets the host nucleus and facilitates parasitism in ArabidopsisFrontiers in Plant Science 9: 1–16. https://doi.org/10.1155/2012/217037.
  33. Simonetti, E., Alba, E., Montes, M.J., Delibes, A., & Lopez-Brana, I. (2010). Analysis of ascorbate peroxidase genes expressed in resistant and susceptible wheat lines infected by the cereal cyst nematode, Heterodera avenae. Plant Cell Reports 29(10): 1169–1178. https://doi.org/10.1007/s00299-010-0903-z.
  34. Stenberg, J.A. (2017). A Conceptual framework for integrated pest management. Trends in Plant Science 22(9): 759–769. https://doi.org/10.1016/j.tplants.2017.06.010.
  35. Torres, M.A., Jones, J.D.G., & Dangl, J.L. (2006). Reactive oxygen species signaling in response to pathogens. Plant Physiology 141(2): 373–378. https://doi.org/10.1104/pp.106.079467.
  36. Wang, Y.C., Qu, G.Z., Li, H.Y., Wu, Y.J., Wang, C., Liu, G.F., & Yang, C.P. (2010). Enhanced salt tolerance of transgenic poplar plants expressing a manganese superoxide dismutase from Tamarix androssowii. Molecular Biology Reports 37: 1119- 1124. https://doi.org/10.1007/s11033-009-9884-9.
  37. Wikes, J.E., & Kirkpatrick, T.L. (2020). The effects of Meloidogyne incognita and Heterodera glycines on the yield and quality of edamame (Glycine max) in Arkansas. Journal of Nematology 52:1-15.
  38. Yao, S., Huang, Y., & Yang, J-in. (2020). The Screening of Resistance against Meloidogyne graminicola in Oats. Agriculture 352: 1-10.
  39. Zacheo, G., & Bleve-Zacheo, T. (1988). Involvement of superoxide dismutases and superoxide radicals in the susceptibility and resistance of tomato plants to Meloidogyne incognita Physiological and Molecular Plant Pathology 32(2): 313–322.
  40. Zadoks, J.C., & Board, E. (1999). A decimal code for the growth stages of cereals. Weed Research 14: 415-421.

 

CAPTCHA Image