ارزیابی اثر ضد‌قارچی عصاره نانو‌کپسوله زیست‌سازگار Trichoderma harzianum

نوع مقاله : مقالات پژوهشی

نویسنده

گروه کشاورزی، دانشگاه پیام نور، تهران، ایران

چکیده

 قارچ Trichoderma harzianum به­عنوان یک عامل شناخته شده کنترل زیستی بیمارگرهای گیاهی و همچنین افزایش دهنده رشد گیاهان، در کشاورزی مورد استفاده قرار می­گیرد. با توجه به اثرات تخریب­کننده عوامل زنده و غیرزنده بر کارایی این قارچ، کپسوله کردن عوامل زیستی با پلیمرهای زیست­تخریب پذیر می­تواند سد محافظتی اطراف این قارچ ایجاد نماید. در سال‌های اخیر، این فناوری زیست­سازگار، مورد توجه محققین قرار گرفته است. در این پژوهش اثرات ضدقارچی عصاره خام و نانوکپسول­های کیتوسان حاوی عصاره قارچ آنتاگونیست T. harzianum در برابر قارچ بیمارگر Macrophomina phaseolina (عامل بیماری پوسیدگی ذغالی سویا) مورد بررسی قرار گرفت. تهیه نانوکپسول­ها به روش ژلاسیون یونی انجام شد. مطالعات ریخت­شناسی نانو­ذرات کپسوله شده با استفاده از میکروسکوپ الکترونی روبشی گسیل میدانی انجام گرفت. میانگین اندازه نانو­ذرات و همچنین پایداری آنها با روش طیف­سنجی پراکندگی نور هیدرودینامیکی اندازه­گیری شد. جهت بررسی فعالیت ضدقارچی عصاره خام و نانو­کپسول­های کیتوسان حاوی عصاره قارچ آنتاگونیست، محیط کشت  سیب­زمینی- دکستروز- آگار (PDA) سترون حاوی غلظت­های مختلف هر یک از تیمارها تهیه گردید. قطر پرگنه قارچ بیمارگر پس از 5 روز، اندازه­گیری و درصد بازدارندگی از رشد قارچ عامل بیماری نسبت به شاهد محاسبه شد. نتایج حاصل از تصویربرداری میکروسکوپ الکترونی روبشی نشان داد، نانو­کپسول­های حاوی عصاره قارچ آنتاگونیست به­صورت ذرات کروی یکنواخت با میانگین قطر 91/77 نانومتر می­باشند. اثرات ضدقارچی نانو­کپسول­های حاوی عصاره قارچ آنتاگونیست به­صورت آزمایش فاکتوریل در قالب طرح کاملا تصادفی مورد بررسی قرار گرفت. نتایج این تحقیق نشان داد، نانوکپسوله کردن عصاره قارچ آنتاگونیست، سبب افزایش معنی­داری در قدرت بازدارندگی قارچ عامل بیماری گردید. عصاره نانوکپسوله شده با گذشت زمان به دلیل رهایش کنترل شده عصاره، به­طور موثرتر و در مدت زمان بیشتری می­تواند قارچ بیمارگر را کنترل نماید. بنابراین، به­نظر می­رسد کپسوله کردن عصاره T. harzianum، در حفظ اثرات ضد­قارچی آنتاگونیست در بر­همکنش با محیط اطراف نقش دارد.

کلیدواژه‌ها

موضوعات


1-Abdelkader, H., Hussain, S., & Abdullah, N. (2018). Review on micro-encapsulation with chitosan for pharmaceuticals applications. MOJ Current Research & Reviews 1(2): 77-84. https://doi.org/10.15406/mojcrr.2018.01.00013.
2- Agnihotri, S.A., Mallikarjuna, N.N., & Aminabhavi, T.M. (2004). Recent advances on chitosan based micro-and nanoparticles in drug delivery. Journal of Controlled Release 100(1): 5-28. https://doi.org/10.1016/j.jconrel.2004.08.010.
3- Akbari, M., Rahimi, Z., & Rahimi, M. (2021). Chitosan/tripolyphosphate nanoparticles in active and passive microchannels. Research in Pharmaceutical Sciences 16(1): 79-93. https://doi.org/10.4103/1735-5362.305191.
4- Caputo, F., Clogston, J.B., Calzolai, L.C., Rösslein, M.D. & Prina-Mello, A. (2019). Measuring particle size distribution of nanoparticle enabled medicinal products, the joint view of EUNCL and NCI-NCL. A step by step approach combining orthogonal measurements with increasing complexity. Journal of Controlled Release 299: 31–43. https://doi.org/10.1016/j.jconrel.2019.02.030.
5- Evidente, A., Cabras, A., Maddau, L., Serra, S., Andolfi, A., & Motta, A. (2003). Viridepyronone, a new antifungal 6-Substituted 2H-Pyran-2-one produced by Trichoderma viride. Journal of Agricultural and Food Chemistry 51(24): 6957-69. https://doi.org/10.1021/jf034708j60.
Fan, W., Yan, W., Xu, Z., & Ni, H. (2012). Formation mechanism of monodisperse.  Low molecular weight chitosan nanoparticles by ionic gelation technique. Colloids and Surfaces B: Biointerfaces 90: 21-27. https://doi.org/10.1016/j.colsurfb.2011.09.042.
7- Harman, G.E. (2006). Overview of mechanisms and uses of Trichoderma spp. Phytopathology 96(2): 190-194. https://doi.org/10.1094/PHYTO-96-0190.
8- Heydari, A., & Pessarakli, M. (2010). A review on biological control of fungal plant pathogens using microbial antagonists. Journal of Biological Sciences 10(4): 27-33. https://doi.org/10.3923/jbs.2010.273.290.
9- Howell, C. (2003). Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Disease 87(1): 4-10.
10- Hung, R., Lee, S., & Bennett, J.W. (2015). Fungal volatile organic compounds and their role in ecosystems. Applied Microbiology and Biotechnology 99(8): 3395-3405.
11- Jelen, H., Błaszczyk, L., Chełkowski, J., Rogowicz, K., & Strakowska, J. (2013). Formation of 6-n-pentyl-2H-pyran-2-one (6-PAP) and other volatiles by different Trichoderma species. Mycological Progress 13(3): 589-600. https://doi.org/10.1007/s11557-013-0942-2.
12- Juric, S., Đermic, E., Topolovec-Pintaric, S., Bedek, M., & Vinceković, M. (2019). Physicochemical properties and releae characteristics of calcium alginate microspheres loaded with Trichoderma viride spores. Journal of Integrative Agriculture 18(11): 2534–2548. https://doi.org/10.1016/S2095-3119(19)62634-1.
13- Kappel, L., Munsterkotter, M., Sipos, G., Escobar Rodriguez, C., & Gruber, S. (2020). Chitin and chitosan remodeling defines vegetative development and Trichoderma biocontrol. PLoS Pathogens 16(2): e1008320. https://doi.org/10.1371/journal.ppat.1008320.
14- Kucuk, C., & Kivanc, M. 2005. In vitro antifungal activity of strains of Trichoderma harzianum. Turkish Journal of Biology 28(2-4): 111-115.
15- Kumar, S., Mukherjee, A., & Dutta, J. (2020). Chitosan based nanocomposite films and coatings: Emerging antimicrobial food packaging alternatives. Trends in Food Science & Technology, 97, 196-209. https://doi.org/10.1016/j.tifs.2020.01.002.
 16- Locatelli, G.O., dos Santos, G.F., Botelho, P.S., Finkler, C.L.L., & Bueno, L.A. (2017). Development of Trichoderma spp. formulations in encapsulated granules (CG) and evaluation of conidia shelf-life. Biological Control http://dx.doi.org/10.1016/j.biocontrol.
17- Mancera-Lópeza, M.E., Izquierdo-Estéveza, W.F., Escalante-Sáncheza, A., Ibarra, J.E., & Barrera-Cortés, J. (2019). Encapsulation of Trichoderma harzianum conidia as a method of conidia preservation at room temperature and propagation in submerged culture. Biocontrol Science and Technology 29(2): 107-130. https://doi.org/10.1080/09583157.2018.1535053.
18- Maruyama, C.R., Bilesky-José, N., de Lima, R., & Fraceto, L.F. (2020). Encapsulation of Trichoderma harzianum preserves enzymatic activity and enhances the potential for biological control. Frontiers in Bioengineering and Biotechnology 8: 225. https://doi.org/10.3389/fbioe.2020.00225.
19- Morath, S.U., Hung, R., & Bennett, J.W. (2012). Fungal volatile organic compounds: a review with emphasis on their biotechnological potential. Fungal Biology Reviews 26(2-3): 73-83.
20- Naskar, S., Sharma, S., & Kuotsu, K. (2019). Chitosan-based nanoparticles: An overview of biomedical applications and its preparation. Journal of Drug Delivery Science and Technology 49(6): 66-81.
21- Peil, S., Beckers, S.J., Fischer, J., & Wurma, F.R. (2020). Biodegradable, lignin-based encapsulation enables delivery of Trichoderma reesei with programmed enzymatic release against grapevine trunk diseases. Materials Today Biology 7: 100061. https://doi.org/10.1016/j.mtbio.2020.100061.
22- Reino, J.L., Guerreo, R.F., & Collado I.G. (2008). Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochemistry Reviews 7(1): 89-123.
23- Sarvaiya, J., & Agrawal, Y. (2015). Chitosan as a suitable nanocarrier material for anti- Alzheimer drug delivery. International Journal of Biological Macromolecules 72: 454-465.
24- Sathiyaseelan, A., Saravanakumar, K., Mariadoss, A.V.A., & Wang, M.H. (2020). Biocompatible fungal chitosan encapsulated phytogenic silver nanoparticles enhanced antidiabetic, antioxidant and antibacterial activity. International Journal of Biological Macromolecules 15: 63-71. https://doi.org/10.1016/j.ijbiomac.
25- Shahiri Tabarestani, M., Rahnama, K., Jahanshahi, M., Nasrollanejad, S., &Fatemi, M.H. (2016 a). Identification of volatile organic compounds of some Trichoderma species using static headspace gas chromatography-mass spectrometry. Mycologia Iranica 3(1): 47-55. https://dx.doi.org/10.22043/mi.2017.41532.1072.
26- Shahiri Tabarestani, M., Rahnama, K., Jahanshahi, M., Nasrollanejad, S., & Fatemi, M.H. (2016 b). Extraction and identification of secondary metabolites produced by Trichoderma atroviridae (6022) and evaluating of their antifungal effects. Journal of Plant Protection 31(1): 131-141. (In Persian with English abstract). https://dx.doi.org/10.22067/jpp.v31i1.55861.
27- Siddiquee, S., Cheong, B.E., Taslima, K.H., Kausar, H., & Hasan, M.M. (2012). Separation and identification of volatile compounds from liquid cultures of Trichoderma harzianum by GC-MS using three different capillary columns. Journal of Chromatographic Science 50(4): 358-367.
28- Siddiquee, S. (2014). Recent advancements on the role and analysis of volatile compounds (VOCs) from Trichoderma. p. 139-170. In: Gupta V.K., Schmoll M., Herrera-Estrella A., Upadhyay R. S. and Druzhinina I. (eds.) Biotechnology and biology of Trichoderma. Eds. Printed and bound in Poland, Elsevier.
29- Sreekumar, S., Goycoolea, F.M., Moerschbacher, B.M., & Rivera-Rodriguez, G.R. (2018). Parameters influencing the size of chitosan-TPP nano-and microparticles. Scientific Reports 8(1): 1-11.
30-Thai, H., Nguyen, C.H.T., Thach, L.T., & Tran, M.T. (2020). Characterization of chitosan/alginate/lovastatin nanoparticles and investigation of their toxic effects in vitro and in vivo. Scientific Reports 10(1): 1-15. https://doi.org/10.1038/s41598-020-57666-8.
31- Vahabi, K.H., Mansoori, G.A., & Karimi, S. (2011). Biosynthesis of silver nanoparticles by fungus Trichoderma reesei (A route for large-scale production of AgNPs). Insciences Journal 1(1): 65-79. https://doi.org/10.5640/insc.010165.
32- Vinale, F., Marra, R., Ghisalberti, E.L., Lorito, M., & Sivasithamparam, K. (2006). Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens. Letters in Applied Microbiology 43(2): 143-148.
33- Vinale, F., Sivasithamparam, K., Ghisalberti, E.L., Marra, R., Barbetti, M.J., Li, H., Woo, S.L., & Lorito, M. (2008). A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiological and Molecular Plant Pathology 72(1-3): 80-86.
34- Vinale, F., Sivasithamparam, K., Ghisalberti, E.L., Woo, S.L., Nigro, M., Marra, R., Lombardi, N., Pascale, A., Ruocco, M., Lanzuise, S., Manganiello, G., & Lorito, M. (2014). Trichoderma secondary metabolites active on plants and fungal pathogens. The Open Mycology Journal 24(2): 127-139.
35- Vincekovic, M., Jalsenjak, N., Topolovec-Pintaric, S., Dermic, E., Bujan, M., & Juric, S. (2016). Encapsulation of biological and chemical agents for plant nutrition and protection: chitosan/alginate microcapsules loaded with copper cations and Trichoderma viride. Journal of Agricultural and Food Chemistry 64(43): 8073-8083. https://doi.org/10.1021/acs.jafc.6b02879.
36- Wu, H., Xu, Y., Liu, G., Ling, J., Dash, B.C., Ruan, J., & Zhang, C. (2014). Emulsion cross-linked chitosan/nanohydroxyapatite microspheres for controlled release of alendronate. Journal of Materials Science: Materials in Medicine 25(12): 2649-2658. https://doi.org/10.1007/s10856-014-5289-y.
37-Wu, J., Wang, Y., Yang, H., Liu, X., & Lu, Z. (2017). Preparation and biological activity studies of resveratrol loaded ionically cross-linked chitosan-TPP nanoparticles. Carbohydrate Polymers 175: 170-177. https://doi.org/10.1016/j.carbpol.2017.07.058. Epub 2017 Jul 25. PMID: 28917853.
CAPTCHA Image