تأثیر نوع و غلظت مویان بر ویژگی قطره و محلول پاشش هالوکسی‌فوپ-آر-متیل و کارایی آن بر جودره (Hordeum spontaneum K. Koch)

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران

چکیده

      آزمایشی در پاییز 1401 در گلخانه تحقیقاتی دانشگاه بوعلی سینا اجرا شد تا تاثیر افزودن 7 غلظت­ (صفر، 025/0، 05/0، 1/0، 2/0، 4/0 و 8/0 درصد حجمی) از 3 نوع مویان (پی­سی­گیت، فریگیت و دی­اُکتیل) به محلول­های پاشش حاوی 7 دُز هالوکسی­فوپ-آر-متیل (صفر، 375/3، 75/6، 5/13، 27، 54 و 108 گرم در هکتار) بر جودره بررسی شود. همزمان، تیمارها با حداکثر دُز علف­کش روی کاغذ حساس به رطوبت نیز پاشیده شدند. همچنین، ضمن اندازه­گیری کشش سطحی آن­ها، با قرار دادن قطره 5 میکرولیتری از آن­ها روی دو سطح رویی و پشتی برگ، زاویه تماس قطره با سطح برگ، مساحت خیس شده برگ با قطره و مدت زمان تبخیر قطره نیز اندازه­گیری شود. غلظت میسل بحرانی مویان­ها 1/0 درصد حجمی بود. مویان­ها سبب کاهش کشش سطحی محلول پاشش، کاهش زاویه تماس قطره با سطح برگ، افزایش مساحت خیس شده برگ، کاهش مدت زمان تبخیر قطره از سطح برگ، کاهش اندازه قطرات پاشش، افزایش پوشش پاشش روی کاغذ حساس به رطوبت و افزایش کارایی علف­کش شد که وابسته به غلظت مویان­ها بودند. بدون مویان، 39/25 گرم علف­کش در هکتار برای کنترل 50 درصدی جودره (ED50) لازم بود. کاربرد علف­کش به همراه دی­اکتیل در غلظت 2/0 درصد حجمی سبب کمترین ED50 (18/4 گرم علف­کش در هکتار) شد. بدون مویان، 68 قطره در سانتی­متر مربع روی کاغذ حساس نشست. بیشترین تراکم قطره (83 قطره در سانتی­متر مربع) با کاربرد دی­اکتیل در غلظت 4/0 درصد حجمی مشاهده شد. بجز در غلظت 8/0 درصد حجمی، توان پی­سی­گیت و دی­اکتیل در افزایش تراکم قطرات پاشش برابر ولی توان مویان فریگیت در این رابطه از دو مویان دیگر کمتر بود. بجز غلظت 8/0 درصد حجمی، توان فریگیت در مقایسه با دیگر مویان­ها در خیساندن کاغذ حساس به رطوبت کمتر بود. تاثیر سطح رویی و پشتی برگ بی­معنی بود و با نوع و غلظت مویان نیز اثرمتقابل نداشت. کمترین زاویه تماس قطره با سطح برگ (30 درجه) با کاربرد غلظت­های 4/0 و 8/0 درصد حجمی از دی­اکتیل مشاهده شد. بیشترین مساحت خیس شده برگ با قطره حاوی پی­سی­گیت در غلظت­های 4/0 و 8/0 درصد حجمی (به ترتیب 3/12 و 5/12 میلی­متر مربع) مشاهده شد. قطره حاوی دی­اکتیل سریعتر از قطره حاوی پی­سی­گیت، و قطره حاوی پی­سی­گیت نیز سریعتر از قطره حاوی فریگیت تبخیر شد. در این پژوهش، توان مویان­ها براساس بهبود کارایی علف­کش به صورت دی­اُکتیل > پی­سی­گیت > فریگیت رتبه­بندی شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of surfactant type and concentration on the properties of spray drop and solution of haloxyfop-R-methyl and its efficacy on wild barley (Hordeum spontaneum K. Koch)

نویسندگان [English]

  • Zohreh Younesi
  • Akbar Aliverdi
  • Goudarz Ahmadvand
Department of Plant Production and Genetics, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
چکیده [English]

Introduction
Wild barley is an annual and winter weed belonging to the family Poaceae. It can occupy a wide range of habitats and its damage to some crops, especially wheat and rapeseed, has been reported. One of Iran’s most widely used herbicides is haloxyfop-R-methyl, used against narrow-leaved weeds such as wild barley in rapeseed, sugar beet, and orchard fields. Haloxyfop-R-methyl inhibits the activity of the enzyme acetyl-coenzyme A carboxylase in the fatty acid biosynthesis pathway, resulting in a disrupted membrane structure and killing treated weeds. Increasing reliance on herbicides, metabolic damage to crops, and the environmental consequences of herbicides have left no choice but to reduce consumption. One of the methods of reducing the consumption of herbicides is the use of surfactants. The purpose of this study was (1) to determine the most compatible surfactant type and concentration among three surfactants: cationic frigate, anionic dioctyl, and nonionic PCgate for use with haloxyfop-R-methyl against wild barley, (2) to determine their mechanism of action.
 
Materials and Methods
In a dose-response experiment conducted in the autumn of 2012 in the research greenhouse of Bu-Ali Sina University, the compatibility of adding 7 concentrations (0, 0.025, 0.05, 0.1, 0.2, 0.4, and 0.8% by volume) of 3 types of surfactants (nonionic PCgate, cationic frigate, and anionic dioctyl) to spray solutions containing 7 doses of haloxyfop-R-methyl (0, 3.375, 6.75, 13.5, 27, 54, and 108 g a.i. ha-1) against wild barley was investigated. At the same time, the solutions containing the maximum dose of herbicide were also sprayed on moisture-sensitive paper. Moreover, the solutions containing the maximum dose of herbicide (108 g a.i. ha-1) along with 7 concentrations (0, 0.025, 0.05, 0.1, 0.2, 0.4, and 0.8% v/v) of 3 types of the surfactants above were prepared to measure their surface tension by the hanging drop method, and the contact angle of the drop with the leaf surface, the wetted area of ​​the leaf, and the duration of drop evaporation by placing a 5 μL drop of the solutions on wild barley’s upper and lower leaf surfaces, which were fixed horizontally.
 
Results
Introduction
Wild barley is an annual and winter weed belonging to the family Poaceae. It can occupy a wide range of habitats and its damage to some crops, especially wheat and rapeseed, has been reported. One of Iran’s most widely used herbicides is haloxyfop-R-methyl, used against narrow-leaved weeds such as wild barley in rapeseed, sugar beet, and orchard fields. Haloxyfop-R-methyl inhibits the activity of the enzyme acetyl-coenzyme A carboxylase in the fatty acid biosynthesis pathway, resulting in a disrupted membrane structure and killing treated weeds. Increasing reliance on herbicides, metabolic damage to crops, and the environmental consequences of herbicides have left no choice but to reduce consumption. One of the methods of reducing the consumption of herbicides is the use of surfactants. The purpose of this study was (1) to determine the most compatible surfactant type and concentration among three surfactants: cationic frigate, anionic dioctyl, and nonionic PCgate for use with haloxyfop-R-methyl against wild barley, (2) to determine their mechanism of action.
 
Materials and Methods
In a dose-response experiment conducted in the autumn of 2012 in the research greenhouse of Bu-Ali Sina University, the compatibility of adding 7 concentrations (0, 0.025, 0.05, 0.1, 0.2, 0.4, and 0.8% by volume) of 3 types of surfactants (nonionic PCgate, cationic frigate, and anionic dioctyl) to spray solutions containing 7 doses of haloxyfop-R-methyl (0, 3.375, 6.75, 13.5, 27, 54, and 108 g a.i. ha-1) against wild barley was investigated. At the same time, the solutions containing the maximum dose of herbicide were also sprayed on moisture-sensitive paper. Moreover, the solutions containing the maximum dose of herbicide (108 g a.i. ha-1) along with 7 concentrations (0, 0.025, 0.05, 0.1, 0.2, 0.4, and 0.8% v/v) of 3 types of the surfactants above were prepared to measure their surface tension by the hanging drop method, and the contact angle of the drop with the leaf surface, the wetted area of ​​the leaf, and the duration of drop evaporation by placing a 5 μL drop of the solutions on wild barley’s upper and lower leaf surfaces, which were fixed horizontally.
 
Results
The critical micelle concentration of the surfactants was determined to be 0.1% v/v. The addition of surfactants to the spray solution caused a decrease in the droplet contact angle with the leaf surface, an increase in the wetted leaf area, a decrease in the droplet evaporation time, an increase in the spray coverage on the moisture-sensitive paper, a decrease in the spray droplet size, and an increase in the efficacy of haloxyfop-R-methyl against wild barley, all of which were dependent on the surfactant concentration. Surfactants at all concentrations significantly reduced the surface tension of the spray solutions. A negative relationship was observed between the efficacy of haloxyfop-R-methyl and the surface tension of the spray solution (R2 = 0.68). Without surfactant, 25.39 g a.i. ha-1 was required to control 50% of wild barley (ED50). Among the treatments, the lowest ED50 (18.4 g a.i. ha-1) was observed when dioctyl was added at 0.2% v/v to the spray solution. Without surfactant, 68 drops cm-2 were deposited on the moisture-sensitive paper. The highest droplet density (83 drops cm-2) was observed when dioctyl was added at 0.4% v/v to the spray solution. Except at 0.8% v/v, at other concentrations, the efficacy of PCgate and dioctyl in increasing the droplet density deposited on the moisture-sensitive paper was equal, and the efficacy of frigate in this regard was lower than the other two surfactants. Except at 0.8% v/v, the efficacy of frigate was lower than that of the other two surfactants in wetting the moisture-sensitive paper, and there was no difference between PCgate and dioctyl. Leaf surface (anterior and posterior) had no significant effect on the measured characteristics and did not interact with surfactant type and concentration. The lowest droplet contact angle (30°) was observed when dioctyl at 0.4 and 0.8% v/v to the spray solution. The droplet containing PCgate at 0.4 and 0.8% v/v (12.3 and 12.5 mm2, respectively) resulted in the highest leaf-wetted area. The droplet containing dioctyl evaporated faster than the droplet containing PCgate, and the droplet containing PCgate evaporated faster than the droplet containing frigate.
 
Conclusions
The results of the present study indicate that PCgate, dioctyl, and frigate are compatible with haloxyfop-R-methyl, even at high concentrations (up to 0.8% v/v). However, a concentration of 0.2% v/v of the surfactants is recommended to avoid additional costs. The ability of the surfactants to improve haloxyfop-R-methyl efficacy against wild barley is as follows: dioctyl > PCgate > frigate. Therefore, dioctyl is a better choice for addition to the haloxyfop-R-methyl spray solution. In this study, it was proven that the surfactants improve the efficacy of the haloxyfop-R-methyl by increasing the spray deposition by reducing the size of the spray droplets and increasing the spread of the droplets on the leaf surface of wild barley. In addition, it seems that PCgate has moisture-absorbing properties that reduce the droplet evaporation time, increasing the duration of herbicide absorption.
 
Conclusions
The results of the present study indicate that PCgate, dioctyl, and frigate are compatible with haloxyfop-R-methyl, even at high concentrations (up to 0.8% v/v). However, a concentration of 0.2% v/v of the surfactants is recommended to avoid additional costs. The ability of the surfactants to improve haloxyfop-R-methyl efficacy against wild barley is as follows: dioctyl > PCgate > frigate. Therefore, dioctyl is a better choice for addition to the haloxyfop-R-methyl spray solution. In this study, it was proven that the surfactants improve the efficacy of the haloxyfop-R-methyl by increasing the spray deposition by reducing the size of the spray droplets and increasing the spread of the droplets on the leaf surface of wild barley. In addition, it seems that PCgate has moisture-absorbing properties that reduce the droplet evaporation time, increasing the duration of herbicide absorption.

کلیدواژه‌ها [English]

  • Critical micelle concentration
  • Dose-response
  • Herbicide
  • Surface tension

©2024 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

  1. Al Heidary, M., Douzals, J.P., Sinfort, C., & Vallet, A. (2014). Influence of spray characteristics on potential spray drift of field crop sprayers: A literature review. Crop Protection, 63, 120-130. https://doi.org/10.1016/j.cropro.2014.05.006
  2. Aliverdi, A., & Karami, S. (2020). The effect of type and size of single, twin, and triplet flat fan nozzles on the activity of cycloxydim against wild barley (Hordeum spontaneum). Journal of Iranian Plant Protection Research, 33(4), 465-474. (in Persian with English abstract)
  3. Aliverdi, A., & Karami, S. (2023). The interaction of organosilicon surfactant type and spray volume on diclofop-methyl efficacy in control of winter wild oat. Journal of Iranian Plant Protection Research, 37(3), 315-325. https://doi.org/22067/jpp.2023.79032.1108
  4. Aliverdi, A., & Malmir, M. (2023). The effect of surfactant type and its concentration on the efficacy of the selective herbicide of sugar beet (Betanal Progress O.F.). Journal of Sugar Beet, 38(1), 109-122. https://doi.org/22092/jsb.2023.359185.1308
  5. Aliverdi, A., Rashed Mohassel, M.H., Zand, E., & Nassiri Mahallati M. (2009). Increased foliar activity of clodinafop-propargyl and/or tribenuron-methyl by surfactants and their synergistic action on wild oat (Avena ludoviciana) and wild mustard (Sinapis arvensis). Weed Biology and Management, 9(4), 292-299. https://doi.org/10.1111/j.1445-6664.2009.00353.x
  6. Chen, H., Muros-Cobos, J.L., & Amirfazli, A. (2018). Contact angle measurement with a smartphone. Review of Scientific Instruments, 89, 035117. https://doi.org/10.1063/1.5022370
  7. Collins, R.T., & Helling, C.S., )2002(. Surfactant enhanced control of two Erythroxylum species by glyphosate. Weed Technology, 16(4), 851-859. https://doi.org/10.1614/0890-037X(2002)016[0851:SECOTE]2.0.CO;2
  8. Devendra, R., Umamahesh, V., Prasad, T.V.R., Prasad, T.G., Asha, S.T., & Ashok. (2004). Influence of surfactants on efficacy of different herbicides in control of Cyperus rotundus and Oxalis latifolia. Current Science, 86(8), 1148-1151.
  9. Ellis, M.B., & Tuck, C.R., (1999). How adjuvants influence spray formation with different hydraulic nozzles. Crop Protection, 18, 101-109. https://doi.org/10.1016/S0261-2194(98)00097-0
  10. Ellis, M.B., Tuck, C.R., & Miller, P.C.H. (2001). How surface tension of surfactant solutions influences the characteristics of sprays produced by hydraulic nozzles used for pesticide application. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 180, 267-276. https://doi.org/10.1016/S0927-7757(00)00776-7
  11. Freed, V.H., & Montgomery, M. (1958). The effect of surfactants on foliar absorption of 3-Amino-1,2,4-Triazole. Weeds, 6, 386-389.
  12. Gimenes, M.J., Zhu, H., Raetano, C.G., & Oliveira, R.B. (2013). Dispersion and evaporation of droplets amended with adjuvants on soybeans. Crop Protection, 44, 84-90. https://doi.org/10.1016/j.cropro.2012.10.022
  13. Hammami, H., Ghorbani, R., & Aliverdi, A. (2017). Evaluation the effect of cationic and nonionic surfactants on als-inhibitor herbicides efficacy on wild oat (Avena ludoviciana) control. Journal of Iranian Plant Protection Research, 31(2), 223-231. https://doi.org/22067/jpp.v0i0.48272
  14. Kargar, M., Rashed Mohassel, M.H., Nezami, A., & Izedi Darbandi, E. (2015). Evaluation effect of adjuvant on mesosulfuron+iodosulfuron herbicide performance on littleseed canarygrass control. Journal of Iranian Plant Protection Research, 29(3), 295-303. https://doi.org/10.22067/jpp.v29i3.22452  
  15. Kooij, S., Sijs, R., Denn, M., Villermaux, E., & Bonn, D. (2018). What determines the drop size in sprays? Physical Review X, 8, 031019. https://doi.org/10.1103/PhysRevX.8.031019
  16. Mamnoie, E., Yazidi Darbandi, E., Rastgo, M., Baghestani, M.A., & Hassanzadeh Khayat, M. (2014). Investigation of the effect of additives in improving the effectiveness of nicosulfuron herbicide in the control of red root cockroach (Amaranthus retroflexus), leek (Chenopodium album), and Echinochloa crus-galli. The 6th Iranian Weed Science Conference. Birjand, Iran.
  17. Maxwell, P.J., Gannon, T.W., & Cooper, R.J. (2018). Nonionic surfactant affects dislodgeable 2,4-D foliar residue from turfgrass. Weed Technology, 32(5), 557-563. https://doi.org/10.1017/wet.2018.47
  18. Mehr Azin, F., Keshtkar, I., Yaqoubi, S., & Mokhdesi Bidgoli, A. (2023). Effect of additives on the efficiency of glyphosate to control Physalis divaricata The 10th Iranian National Weed Science Conference, Hamadan, Iran. (in Persian with English abstract)
  19. Miller, P.C.H., & Ellis, M.C.B. (2000). Effects of formulation on spray nozzle performance for applications from ground-based boom sprayers. Crop Protection, 19, 609-615. https://doi.org/10.1016/S0261-2194(00)00080-6
  20. Mohammadi, S., Rastgoo, M., Baghestani, M.A., Vafaie Tabar, M., & Izadi Darbandi, E. (2019). Evaluation of using time effect of total (metsulfuron-methyl 25% + sulfosulfuron 75%) herbicide on some traits of spontaneous barley (Hordeum spontaneum Koch) ecotypes. Journal of Iranian Plant Protection Research, 32(3), 373-384. (in Persian with English abstract) https://doi.org/10.22067/jpp.v31i4.54436
  21. Mousavi, K. (2020). The effect of cutting off the wild barley (Hordeum spontaneum C. Koch) spike in wheat on its population in chickpea under a crop rotation system. Journal of Iranian Plant Protection Research, 33(4), 441-451. (in Persian with English abstract) https://doi.org/10.22067/jpp.v33i4.73370
  22. Oliveira, R.B., Antuniassi, U.R., Mota, A.A.B., & Chechetto, R.G. (2013). Potential of adjuvants to reduce drift in agricultural spraying. Engenharia Agricola, 33, 986-992. https://doi.org/10.1590/S0100-69162013000500010
  23. Penner, D. (2000). Activator adjuvants. Weed Technology, 14(4), 785-791. https://doi.org/10.1614/0890-037X(2000)014[0785:AA]2.0.CO;2
  24. Ritz, C., Baty, F., Streibig, J.C., & Gerhard, D. (2015). Dose-response analysis using R. PLoS One, 10, e0146021. https://doi.org/10.1371/journal.pone.0146021
  25. Sijs, R., & Bonn, D. (2020). The effect of adjuvants on spray droplet size from hydraulic nozzles. Pest Management Science, 76, 3487-3494. https://doi.org/10.1002/ps.5742
  26. Taheri, Sh., Aliverdi, A., & Ahmadvand, G. (2024). The effect of pH and light on the efficacy of spray solution stored of haloxyfop-r-methyl, fluazifop-p-butyl, and sethoxydim against wild barley (Hordeum spontaneum Koch). Journal of Iranian Plant Protection Research, 37, 425-439. (in Persian with English abstract) https://doi.org/10.22067/jpp.2023.80667.1128
  27. Zhou, Z., Cao, C., Cao, L., Zheng, L., Xu, J., Li, F., & Huang Q. (2018) Effect of surfactant concentration on the evaporation of droplets on cotton (Gossypium hirsutum) leaves. Colloids and Surfaces B: Biointerfaces, 167, 206-212. https://doi.org/10.1016/j.colsurfb.2018.04.018
  28. Zhu, H., & Lin, J. )2016.( Coverage area and fading time of surfactant-amended herbicidal droplets on cucurbitaceous Transactions of the ASABE. 59, 829-838. https://doi.org/10.13031/trans.59.11427

 

CAPTCHA Image