Control of Tomato Early Blight (Alternaria solani) Disease by Aqueous Extract of Thyme (Thymus vulgaris)

Document Type : Research Article

Authors

1 Department of Plant Protection, College of Agriculture, Afaq Institute of Higher Education, Urmia, Iran

2 Department of Plant Protection, College Institute, Urof Agriculture Afagh Higher Education mia, Iran

3 Plant Virology Research Center, School of Agriculture, Shiraz University, Shiraz, Iran.

10.22067/jpp.2025.87475.1183

Abstract

Introduction
Tomato (Solanum lycopersicum) is the second most valuable agricultural product after potatoes. Early blight, caused by Alternaria solani, is a major disease affecting tomatoes, damaging stems, leaves, and fruits. This disease significantly reduces photosynthesis and can lead to leaf drop in severe cases across tomato-growing regions in Iran. Common control methods often involve chemical pesticides, but their excessive use can result in environmental pollution, pathogen resistance, and the emergence of dangerous strains, exacerbating the damage. As a safer alternative, researchers have increasingly focused on using natural compounds, or phytometabolites, for pest and pathogen management. Plant biocides offer numerous advantages, including rapid decomposition, specific toxicity, reduced bioaccumulation, and minimal harm to beneficial insects. This study aims to evaluate the effectiveness of thyme extract in managing tomato spot disease as a substitute for chemical pesticides, alongside an assessment of morphological and physiological characteristics in infected versus healthy plants.
 
Materials and Methods
Five fungal isolates were collected from tomato fields in various locations of West Azarbaijan province. Extraction and isolation of A. solani followed the Rigotti method (2003), while DNA extraction and PCR were conducted using Ji Cho's method (2016), with the amplified fragments subsequently sequenced. A phylogenetic tree was created using Mega 8 software, positioning the Iranian isolate alongside Asian A. solani isolates. Thyme extract's effect on fungal colony growth was tested in the lab, and pathogenicity was assessed on tomato variety 4129. Morphological traits, including plant and root length and biomass, along with physiological traits such as chlorophyll content and the expression of defense genes (CAT, APX, POD), as well as phenol and flavonoid levels were measured for UrmiaB isolate, as the most virulent among the collected isolates.
 
Results and Discussion
All concentrations of thyme extract tested in this research exhibited significant inhibitory and antifungal effects at both 1% and 5% probability levels compared to the controls. Additionally, thyme extract showed moderate to high antifungal activity against A. solani, both in laboratory and greenhouse settings. In laboratory trials, thyme concentrations of 50, 100, and 150 mg mL-1 markedly reduced fungal growth, particularly at higher concentrations (100 and 150 mg mL-1), which also corresponded with a decrease in pathogenicity affecting tomato fruits of cultivar 4129. Morphological and physiological assessments indicated that thyme extract improved traits in tomato variety 4129, including root and shoot lengths, biomass, chlorophyll content, and the expression of defense-related enzymes (CAT, APX, POD), as well as phenolic and flavonoid levels under greenhouse conditions. These findings demonstrate that thyme extract effectively mitigates early blight disease in tomatoes by inhibiting fungal growth.
 
Conclusion
The results indicated that thyme extract effectively reduced the activity of the pathogen responsible for tomato early blight in both laboratory and greenhouse conditions. Its antifungal properties make thyme extract a promising candidate for commercialization in agricultural pest management, particularly when used in combination with other compounds.
 

Keywords

Main Subjects


©2024 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

 

https://doi.org/10.22067/JPP.2025.87475.1183

  1. Abd-Ellatif, S., Ibrahim, A.A., Safhi, F.A., Abdel Razik, E.S., Kabeil, S.S., Aloufi, S., & Elshafie, H.S. (2022). Green synthesized of Thymus vulgaris chitosan nanoparticles induce relative WRKY-genes expression in Solanum lycopersicum against Fusarium solani, the causal agent of root rot disease. Plants11(22), 3129. https://doi.org/10.3390/plants11223129
  2. Abu-Bader, S.H. (2021). Using Statistical Methods in Social Science Research: With a complete SPSS Guide. Oxford University Press, USA.
  3. Abdelgawad, Z.A., Mohamed, T.R., Afiah, S., & Al-Agwany, H. (2015). Effect of drought and salt stress on growth, osmolytes, protein, and isozymes in Vicia faba genotypes. Egyptian Journal of Agronomy37, 93-119. https://doi.org/10.21608/agro.2015.67
  4. Aghazadeh Naeini, S.S., Maleki, M., Gholamnezhad, J., & Shirmardi, M. (2022). Evaluation of the effect of some plant extracts in controlling Rhizoctonia rot in the greenhouse cucumber. BioControl in Plant Protection9(2), 87-113. htp//doi.org/10.22092/BCPP.2022.128595.
  5. Ahmed, M., Sajid, A. R., Javeed, A., Aslam, M., Ahsan, T., Hussain, D., & Ji, M. (2022). Antioxidant, antifungal, and aphicidal activity of the triterpenoids spinasterol and 22, 23-dihydrospinasterol from leaves of Citrullus colocynthisScientific Reports12(1), 4910. https://doi.org/10.1038/s41598-022-08999-z  .
  6. Aksit, H., Bayar, Y., Simsek, S., & Ulutas, Y. (2022). Chemical composition and antifungal activities of the essential oils of thymus species (Thymus pectinatus, Thymus convolutus, Thymus vulgaris) against plant pathogens. Journal of Essential Oil Bearing Plants, 25(1), 200-207. https://doi.org/10.1080/0972060X.2022.2043189 .
  7. Amini, J., Farhang, V., Javadi, T., & Nazemi, J. (2018). Antifungal effect of plant essential oils on controlling PhytophthoraThe Plant Pathology Journal32(1), 16. https://doi.org/10.5423/ppj.oa.05.2015.0091
  8. Amini, M., Safaie, N., Salmani, M. J., & Shams-Bakhsh, M. (2012). Antifungal activity of three medicinal plant essential oils against some phytopathogenic fungi. Trakia Journal Sciences10(1), 1-8.
  9. Al-Rahmah, A. N., Mostafa, A. A., Abdel-Megeed, A., Yakout, S. M., & Hussein, S. A. (2013). Fungicidal activities of certain methanolic plant extracts against tomato phytopathogenic fungi. African Journal of Microbiology Research7(6), 517-524. https://doi.org/5897/AJMR12.1902 .
  10. Ashrafi, A., Salehzadeh, M., & Khezrinezhad, N. (2020). Detection and identification of tomato wilt disease in East Azerbaijan province and controlling it using antagonist bacteria. Genetic Engineering and Biosafety Journal9(1), 28-39. http://dorl.net/dor/20.1001.1.25885073.1399.9.1.2.5 .
  11. Bahraminejad, S., Seifolahpour, B., & Amiri, R. (2016). Antifungal effects of some medicinal and aromatic plant essential oils against Alternaria solaniJournal of Crop Protection5(4), 603-616. http://dorl.net/dor/20.1001.1.22519041.2016.5.4.14.9.
  12. Balkan, B., Balkan, S., Aydoğdu, H., Güler, N., Ersoy, H., & Aşkın, B. (2017). Evaluation of antioxidant activities and antifungal activity of different plants species against pink mold rot-causing Trichothecium roseumArabian Journal for Science and Engineering42(6), 2279-2289. https://doi.org/10.1007/s13369-017-2484-4.
  13. Campolo, O., Giunti, G., Russo, A., Palmeri, V., & Zappalà, L. (2018). Essential oils in stored product insect pest control. Journal of Food Quality2018, 1-18. https://doi.org/10.1155/2018/6906105.
  14. Chance, B., & Maehly, A. C. (1955). Assay of catalases and peroxidases. Methodes in Enzymology, 2 (1),  764-765. https://doi.org/10.1016/S0076-6879(55)02300-8.
  15. Danaei, M., Baghizadeh, A., Pourseyedi, S., Amini, J., & Yaghoobi, M. M. (2014). Biological control of plant fungal diseases using volatile substances of Streptomyces griseusEuropian Journal of Experimental Bioogyl4(1), 334-339.
  16. Doehlemann, G., Ökmen, B., Zhu, W., & Sharon, A. (2017). Plant pathogenic fungi. Microbiology Spectrum5(1), 5-1. https://doi.org/10.1128/microbiolspec.funk-0023-2016
  17. Dev, U., Devakumar, C., Mohan, J., & Agarwal, P. C. (2004). Antifungal activity of aroma chemicals against seed-borne fungi. Journal of essential oil Research16(5), 496-499. https://doi.org/10.1080/10412905.2004.9698780.
  18. Driscoll, W. C. (1996). Robustness of the ANOVA and Tukey-Kramer statistical tests. Computers and Industrial Engineering31(1-2), 265-268. https://doi.org/10.1016/0360-8352(96)00127-1
  19. Farashah, S. D., & Salehzadeh, M. (2023). Effect of antagonistic bacterial agents isolated from the pistachio orchards on Aspergilus flavusJournal of Microbial World16(2), 143-155. https://doi.org/10.30495/jmw.2023.1968442.2038.
  20. Fatemi, M., Azadi, H., Rafiaani, P., Taheri, F., Dubois, T., Van Passel, S., & Witlox, F. (2018). Effects of supply chain management on tomato export in Iran: Application of structural equation modeling. Journal of Food Products Marketing24(2), 177-195. https://doi.org/10.1080/10454446.2017.1266552
  21. Ferreira, R. B., Monteiro, S. A. R. A., Freitas, R., Santos, C. N., Chen, Z., Batista, L. M., Duarte, j., Borges, A., & Teixeira, A. R. (2007). The role of plant defence proteins in fungal pathogenesis. Molecular Plant Pathology8(5), 677-700. https://doi.org/10.1111/j.1364-3703.2007.00419.x.
  22. Ferrigo, D., Mondin, M., Ladurner, E., Fiorentini, F., Causin, R., & Raiola, A. (2020). Effect of seed biopriming with Trichoderma harzianum strain INAT11 on Fusarium ear rot and Gibberella ear rot diseases. Biological Control147, 104286. https://doi.org/10.1016/j.biocontrol.2020.104286.
  23. Fravel, D. R. (2005). Commercialization and implementation of biocontrol. Annual Review of Phytopathology Journal43(1), 337-359. https://doi.org/10.1146/annurev.phyto.43.032904.092924.
  24. Gandomi, H., Misaghi, A., Basti, A. A., Bokaei, S., Khosravi, A., Abbasifar, A., & Javan, A. J. (2009). Effect of Zataria multiflora essential oil on growth and aflatoxin formation by Aspergillus flavus in culture media and cheese. Food and chemical toxicology47(10), 2397-2400. https://doi.org/10.1016/j.fct.2009.05.024.
  25. Gholamnezhad, J., Arsalani, S., & Maleki, M. (2019). The investigation of the effect of garlic and thyme extracts on orange green mold (Penicillium digitatum), defense enzymes and genes expression. Plant Protection (Scientific Journal of Agriculture)42(1), 91-118. https://doi.org/10.22055/ppr.2019.14495
  26. Gupta, P., Gupta, H., Tripathi, S., & Poluri, K. M. (2023). Biochemical and metabolomic insights into antifungal mechanism of berberine against Candida glabrataApplied Microbiology and Biotechnology107(19), 6085-6102. https://doi.org/10.1007/s00253-023-12714-x.
  27. Haghpanah, M., Najafi-Zarini, H., & Babaeian-Jelodar, N. (2023). Differential physiological and molecular responses of susceptible and resistant tomato genotypes to Alternaria solaniJournal of Crop Protection12(3), 227-240. http://dorl.net/dor/20.1001.1.22519041.2023.12.3.1.3.
  28. Hemeda, H. M., & Klein, B. P. (1990). Effects of naturally occurring antioxidants on peroxidase activity of vegetable extracts. Journal of Food Science55(1), 184-185. https://doi.org/10.1111/j.1365-2621.1990.tb06048.x.
  29. He, Y., Yan, H., Hua, W., Huang, Y., & Wang, Z. (2016). Selection and validation of reference genes for quantitative real-time PCR in Gentiana macrophylla. Frontiers in Plant Science7, 945. https://doi.org/10.3389/fpls.2016.00945
  30. Hong, J. K., Jo, Y. S., Ryoo, D. H., Jung, J. H., Kwon, H. J., Lee, Y. H., & Park, C. J. (2018). Alternaria spots in tomato leaves differently delayed by four plant essential oil vapours. Research in Plant Disease24(24), 292-301. https://doi.org/10.5423/RPD.2018.24.4.292
  31. Iraji, A., Yazdanpanah, S., Alizadeh, F., Mirzamohammadi, S., Ghasemi, Y., Pakshir, K., & Zomorodian, K. (2020). Screening the antifungal activities of monoterpenes and their isomers against CandidaJournal of Applied Microbiology129(6), 1541-1551. https://doi.org/10.1111/jam.14740.
  32. ji Cho, H., Hong, S. W., Kim, H. J., & Kwak, Y. S. (2016). Development of a multiplex PCR method to detect fungal pathogens for quarantine on exported cacti. The Plant Pathology Journal32(1), 53. https://doi.org/10.5423%2FPPJ.NT.09.2015.0184.
  33. Jia, J., Ford, E., Hobbs, S. M., Baird, S. M., & Lu, S. E. (2022). Occidiofungin is the key metabolite for antifungal activity of the endophytic bacterium Burkholderia MS455 against Aspergillus flavusPhytopathology®112(3), 481-491. https://doi.org/10.1094/PHYTO-06-21-0225-R
  34. Karimi, S., Gholamnezhad, J., & Maleki, M. (2020). Control of Aspergillus and related aflatoxin production by using different plant extracts. BioControl in Plant Protection8(1), 117-136. https://doi.org/10.22092/bcpp.2020.124008.
  35. Kamangar, H., Hemmati, R., Yazdinejad, A., & Movahedi Fazel, M. (2014). Study on antifungal effects of five plant species extract against Fusarium solani and Rhizoctonia solani on bean. Iranian Journal of Plant Protection Science45(1), 49-58. https://doi.org/10.22059/ijpps.2014.52246.
  36. Kasahara, K., Miyamoto, T., Fujimoto, T., Oguri, H., Tokiwano, T., Oikawa, H., & Fujii, I. (2010). Solanapyrone synthase, a possible Diels–Alderase and iterative type I polyketide synthase encoded in a biosynthetic gene cluster from Alternaria solaniChemBioChem11(9), 1245-1252. https://doi.org/10.1002/cbic.201000173.
  37. Kumar, V., Haldar, S., Pandey, K. K., Singh, R. P., Singh, A. K., & Singh, P. C. (2008). Cultural, morphological, pathogenic and molecular variability amongst tomato isolates of Alternaria solani in India. World Journal of Microbiology and Biotechnology24, 1003-1009. https://doi.org/10.1007/s11274-007-9568-3.
  38. Lichtenthaler, H. K., & Wellburn, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biological Society Transaction, 11 (5), 591-592. https://doi.org/10.1042/bst0110591.
  39. Liu, W., Liu, K., Chen, D., Zhang, Z., Li, B., El-Mogy, M. M., & Chen, T. (2022). Solanum lycopersicum, a model plant for the studies in developmental biology, stress biology and food science. Foods11(16), 2402. https://doi.org/10.3390/foods11162402.
  40. Lotfi, A., Kottb, M., Elsayed, A., & Shafik, H. (2021). Antifungal activity of some Mediterranean seaweed against Macrophomina phaseolina and Fusarium oxysporum in vitroAlfarama Journal of Basic and Applied Sciences2(1), 81-96. https://doi.org/10.21608/ajbas.2020.41969.1031.
  41. Mahmoudi, E., Ahmadi, A., & Naderi, D. (2012). Effect of Zataria multiflora essential oil on Alternaria alternata in vitro and in an assay on tomato fruits. Journal of Plant Diseases and Protection119, 53-58. https://doi.org/10.1007/BF03356420.
  42. Meena, B. R., Meena, S., Chittora, D., & Sharma, K. (2021). Antifungal efficacy of Thevetia peruviana leaf extract against Alternaria solani and characterization of novel inhibitory compounds by Gas Chromatography-Mass Spectrometry analysis. Biochemistry and Biophysics Reports25, 100914. https://doi.org/10.1016/j.bbrep.2021.100914.
  43. Moghaddam, M., & Mehdizadeh, L. (2020). Chemical composition and antifungal activity of essential oil of Thymus vulgaris grown in Iran against some plant pathogenic fungi. Journal of Essential Oil Bearing Plants23(5), 1072-1083. https://doi.org/10.1080/0972060X.2020.1843547.
  44. Nejhad, A. A., Behbahani, B. A., Hojjati, M., Vasiee, A., & Mehrnia, M. A. (2024). Investigation of the inhibitory, fungicidal and interactive effects of the aqueous extract of Calotropis procera on Alternaria alternata, Alternaria solani, Saccharomyces cerevisiae, and Fusarium solaniin vitro”. Journal of Food Science and Technology (2008-8787)20(143).
  45. Narware, J., Singh, S. P., Manzar, N., & Kashyap, A. S. (2023). Biogenic synthesis, characterization, and evaluation of synthesized nanoparticles against the pathogenic fungus Alternaria solaniFrontiers in Microbiology14, 1159251. https://doi.org/10.3389/fmicb.2023.1159251.
  46. Nateqi, M., & Mirghazanfari, S. M. (2018). Determination of total phenolic content, antioxidant activity and antifungal effects of Thymus vulgaris, Trachyspermum ammi and Trigonella foenum-graecum extracts on growth of Fusarium solaniCellular and Molecular Biology64(14), 39-46. https://doi.org/10.14715/cmb/2018.64.14.7.
  47. Pusztahelyi, T., Holb, I. J., & Pócsi, I. (2015). Secondary metabolites in fungus-plant interactions. Frontiers in plant Science6, 573. https://doi.org/10.3389/fpls.2015.00573.
  48. Rana, K. M., Maowa, J., Alam, A., Dey, S., Hosen, A., Hasan, I., & Kawsar, S. M. (2021). In silico DFT study, molecular docking, and ADMET predictions of cytidine analogs with antimicrobial and anticancer properties. In Silico Pharmacology9, 1-24. https://doi.org/10.1007/s40203-021-00102-0.
  49. Rehmany, A. P., Grenville, L. J., Gunn, N. D., Allen, R. L., Paniwnyk, Z., Byrne, J., & Beynon, J. L. (2003). A genetic interval and physical contig spanning the Peronospora parasitica (At) avirulence gene locus ATR1Nd. Fungal Genetics and Biology38(1), 33-42. https://doi.org/10.1016/S1087-1845(02)00515-7.
  50. Ribera, A. E., & Zuñiga, G. (2012). Induced plant secondary metabolites for phytopatogenic fungi control: A review. Journal of Soil Science and Plant Nutrition12(4), 893-911. http://dx.doi.org/10.4067/S0718-95162012005000040.
  51. Rigotti, S., Viret, O., & Gindrat, D. (2003). Fungi from symptomless strawberry plants in Switzerland. Phytopathologia Mediterranea42(1), 85-88.
  52. Sajjadi, S. A., & Assemi, H. (2014). Study of antifungal activity of plant extracts of catmint, tobacco and thyme on tobacco pathogens fungal. Biological Control of Pests and Plant Diseases3(1), 41-52.
  53. Sánchez-Gómez, T., Santamaría, Ó., Martín-García, J., & Poveda, J. (2024). Seed extracts as an effective strategy in the control of plant pathogens: Scalable industry bioactive compounds for sustainable agriculture. Biocatalysis and Agricultural Biotechnology, 103332. https://doi.org/10.1016/j.bcab.2024.103332.
  54. Sareena, S., Poovannan, K., Kumar, K. K., Raja, J. A. J., Samiyappan, R., Sudhakar, D., & Balasubramanian, P. (2006). Biochemical responses in transgenic rice plants expressing a defence gene deployed against the sheath blight pathogen, Rhizoctonia solaniCurrent Science, 91 (11), 1529-1532.
  55. Sepehrvand, A., Ezatpour, B., Tarkhan, F., Bahmani, M., Khonsari, A., & Rafieian-Kopaei, M. (2017). Phytotherapy in fungi and fungal disease: A review of effective medicinal plants on important fungal strains and diseases. International Journal of Pharmaceutical Sciences and Research8(11), 4473-4495. https://doi.org/13040/IJPSR.0975-8232.8(11).4473-95.
  56. Serag, A., Salem, M. A., Gong, S., Wu, J. L., & Farag, M. A. (2023). Decoding metabolic reprogramming in plants under pathogen attacks, a comprehensive review of emerging metabolomics technologies to maximize their applications. Metabolites13(3), 424. https://doi.org/10.3390/metabo13030424.
  57. Shahriari, D., Alibeyk Tehrani, N., & Maleki, M. (2017). The inhibitory effect of Thymus vulgaris and Carum copticum essential oil on the growth of Rhizoctonia solani, the causal agent of potato stem canker in vitro and greenhouse conditions. Applied Plant Protection6(2), 97-107.
  58. Shalaby, S., & Horwitz, B. A. (2015). Plant phenolic compounds and oxidative stress: Integrated signals in fungal–plant interactions. Current genetics61, 347-357. https://doi.org/10.1007/s00294-014-0458-6.
  59. Soltani, J., & Moghaddam, M. S. H. (2014). Diverse and bioactive endophytic Aspergilli inhabit Cupressaceae plant family. Archives of Microbiology196, 635-644. https://doi.org/10.1007/s00203-014-0997-8.
  60. Stepanova, M., & Korzhikova-Vlakh, E. (2022). Modification of cellulose micro-and nanomaterials to improve properties of aliphatic polyesters/cellulose composites: A review. Polymers14(7), 1477. https://doi.org/10.3390/polym14071477.
  61. Sudhakar, N., Nagendra-Prasad, D., Mohan, N., & Murugesan, K. (2007). Induction of systemic resistance in Lycopersicon esculentum PKM1 (tomato) against cucumber mosaic virus by using ozone. Journal of Virological Methods139(1), 71-77. https://doi.org/10.1016/j.jviromet.2006.09.013.
  62. Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution24(8), 1596-1599. https://doi.org/10.1093/molbev/msm092
  63. Verma, P. K., Verma, S., Pandey, N., & Chakrabarty, D. (2021). Antimicrobial products from plant biodiversity. Bioprospecting of Plant Biodiversity for Industrial Molecules, 8 (1). 153-173. https://doi.org/10.1002/9781119718017.ch8.
  64. Younesi, S., Salehzadeh, M., & Soleymani Pari, M. J. (2023). Control of strawberry gray mold fungus with combined application of different species of Trichoderma and salicylic acid. Journal of Microbial World16(1), 88-72.
CAPTCHA Image