مهار لکه موجی گوجه‌فرنگی (Alternaria solani) با استفاده از عصاره آبی آویشن (Thymus vulgaris)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه گیاه پزشکی، دانشکده کشاورزی، مؤسسه آموزش عالی آفاق، ارومیه، ایران.

2 مرکز تحقیقات ویروس شناسی گیاهی، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ایران

چکیده

در این بررسی، اثر سه غلظت 50، 100 و 150 میلی­گرم بر میلی­لیتر عصاره آویشن در شرایط آزمایشگاهی و گلخانه­ای روی قارچ بیمارگر Alternaria solani، عامل بیماری بلایت زودرس گوجه­فرنگی مورد بررسی قرار گرفت. تمامی غلظت­های عصاره آویشن مورد استفاده در این تحقیق هر یک نسبت به تیمار کنترل مثبت خود خاصیت بازدارندگی و ضدقارچی در سطح احتمال پنج درصد نشان دادند. همچنین در شرایط آزمایشگاهی و گلخانه­ای، عصاره آویشن وابسته به غلظت، خاصیت ضدقارچی متوسط به بالایی علیه بیمارگرA. solani  داشت. زمانی‌که قارچ بیمارگر در روش­های آزمایشگاهی و کشت در پتری­دیش، تحت تیمار با غلظت­های 50، 100 و 150 میلی­گرم بر میلی­لیتر آویشن قرار گرفت، میزان رشد قارچ مخصوصاً در تیمار غلظت­های بالا ( 100 و 150 میلی­گرم بر میلی‌لیتر) کاهش چشمگیری پیدا کرد و به دنبال آن شدت بیماری­زایی نیز وابسته به غلظت در میوه­های گوجه­فرنگی رقم 4129 کاهش یافت. بررسی صفات موفو-فیزیولوژیک نشان داد که عصاره آویشن وابسته به غلظت منجر به بهبود صفات مذکور در گوجه­فرنگی رقم 4129 شامل: طول ریشه و شاخسار، وزن­ تر و خشک ریشه و شاخسار، افزایش محتوای کلروفیل بوته، افزایش بیان برخی آنزیم­های دفاعی مانند کاتالاز، آسکوربات­پراکسیداز، پراکسیداز، فنل­ها و فلاونوئیدها تحت شرایط گلخانه­ای شد. این نتایج نشان می­دهد که عصاره آویشن روی قارچ بیمارگر عامل بلایت زودرس گوجه­فرنگی تحت شرایط گلخانه­ای و آزمایشگاهی به­خوبی تأثیر گذاشته و باعث کاهش رشد قارچ و متعاقب آن کاهش میزان شدت بیماری شده است. قابلیت ضدقارچی عصاره آویشن بر روی بوته­ها در کشت آزاد و گلخانه­ای و همچنین میوه­ها در شرایط انباری می­تواند، این ترکیب را بعنوان یک پادزیست گیاهی مناسب برای مطالعه روی سایر بیمارگرهای گیاهی و تجاری­سازی این محصول معرفی نماید.
 

کلیدواژه‌ها

موضوعات


©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

 

https://doi.org/10.22067/JPP.2025.87475.1183

  1. Abd-Ellatif, S., Ibrahim, A.A., Safhi, F.A., Abdel Razik, E.S., Kabeil, S.S., Aloufi, S., & Elshafie, H.S. (2022). Green synthesized of Thymus vulgaris chitosan nanoparticles induce relative WRKY-genes expression in Solanum lycopersicum against Fusarium solani, the causal agent of root rot disease. Plants11(22), 3129. https://doi.org/10.3390/plants11223129
  2. Abu-Bader, S.H. (2021). Using Statistical Methods in Social Science Research: With a complete SPSS Guide. Oxford University Press, USA.
  3. Abdelgawad, Z.A., Mohamed, T.R., Afiah, S., & Al-Agwany, H. (2015). Effect of drought and salt stress on growth, osmolytes, protein, and isozymes in Vicia faba genotypes. Egyptian Journal of Agronomy37, 93-119. https://doi.org/10.21608/agro.2015.67
  4. Aghazadeh Naeini, S.S., Maleki, M., Gholamnezhad, J., & Shirmardi, M. (2022). Evaluation of the effect of some plant extracts in controlling Rhizoctonia rot in the greenhouse cucumber. BioControl in Plant Protection9(2), 87-113. htp//doi.org/10.22092/BCPP.2022.128595.
  5. Ahmed, M., Sajid, A. R., Javeed, A., Aslam, M., Ahsan, T., Hussain, D., & Ji, M. (2022). Antioxidant, antifungal, and aphicidal activity of the triterpenoids spinasterol and 22, 23-dihydrospinasterol from leaves of Citrullus colocynthisScientific Reports12(1), 4910. https://doi.org/10.1038/s41598-022-08999-z  .
  6. Aksit, H., Bayar, Y., Simsek, S., & Ulutas, Y. (2022). Chemical composition and antifungal activities of the essential oils of thymus species (Thymus pectinatus, Thymus convolutus, Thymus vulgaris) against plant pathogens. Journal of Essential Oil Bearing Plants, 25(1), 200-207. https://doi.org/10.1080/0972060X.2022.2043189 .
  7. Amini, J., Farhang, V., Javadi, T., & Nazemi, J. (2018). Antifungal effect of plant essential oils on controlling PhytophthoraThe Plant Pathology Journal32(1), 16. https://doi.org/10.5423/ppj.oa.05.2015.0091
  8. Amini, M., Safaie, N., Salmani, M. J., & Shams-Bakhsh, M. (2012). Antifungal activity of three medicinal plant essential oils against some phytopathogenic fungi. Trakia Journal Sciences10(1), 1-8.
  9. Al-Rahmah, A. N., Mostafa, A. A., Abdel-Megeed, A., Yakout, S. M., & Hussein, S. A. (2013). Fungicidal activities of certain methanolic plant extracts against tomato phytopathogenic fungi. African Journal of Microbiology Research7(6), 517-524. https://doi.org/5897/AJMR12.1902 .
  10. Ashrafi, A., Salehzadeh, M., & Khezrinezhad, N. (2020). Detection and identification of tomato wilt disease in East Azerbaijan province and controlling it using antagonist bacteria. Genetic Engineering and Biosafety Journal9(1), 28-39. http://dorl.net/dor/20.1001.1.25885073.1399.9.1.2.5 .
  11. Bahraminejad, S., Seifolahpour, B., & Amiri, R. (2016). Antifungal effects of some medicinal and aromatic plant essential oils against Alternaria solaniJournal of Crop Protection5(4), 603-616. http://dorl.net/dor/20.1001.1.22519041.2016.5.4.14.9.
  12. Balkan, B., Balkan, S., Aydoğdu, H., Güler, N., Ersoy, H., & Aşkın, B. (2017). Evaluation of antioxidant activities and antifungal activity of different plants species against pink mold rot-causing Trichothecium roseumArabian Journal for Science and Engineering42(6), 2279-2289. https://doi.org/10.1007/s13369-017-2484-4.
  13. Campolo, O., Giunti, G., Russo, A., Palmeri, V., & Zappalà, L. (2018). Essential oils in stored product insect pest control. Journal of Food Quality2018, 1-18. https://doi.org/10.1155/2018/6906105.
  14. Chance, B., & Maehly, A. C. (1955). Assay of catalases and peroxidases. Methodes in Enzymology, 2 (1),  764-765. https://doi.org/10.1016/S0076-6879(55)02300-8.
  15. Danaei, M., Baghizadeh, A., Pourseyedi, S., Amini, J., & Yaghoobi, M. M. (2014). Biological control of plant fungal diseases using volatile substances of Streptomyces griseusEuropian Journal of Experimental Bioogyl4(1), 334-339.
  16. Doehlemann, G., Ökmen, B., Zhu, W., & Sharon, A. (2017). Plant pathogenic fungi. Microbiology Spectrum5(1), 5-1. https://doi.org/10.1128/microbiolspec.funk-0023-2016
  17. Dev, U., Devakumar, C., Mohan, J., & Agarwal, P. C. (2004). Antifungal activity of aroma chemicals against seed-borne fungi. Journal of essential oil Research16(5), 496-499. https://doi.org/10.1080/10412905.2004.9698780.
  18. Driscoll, W. C. (1996). Robustness of the ANOVA and Tukey-Kramer statistical tests. Computers and Industrial Engineering31(1-2), 265-268. https://doi.org/10.1016/0360-8352(96)00127-1
  19. Farashah, S. D., & Salehzadeh, M. (2023). Effect of antagonistic bacterial agents isolated from the pistachio orchards on Aspergilus flavusJournal of Microbial World16(2), 143-155. https://doi.org/10.30495/jmw.2023.1968442.2038.
  20. Fatemi, M., Azadi, H., Rafiaani, P., Taheri, F., Dubois, T., Van Passel, S., & Witlox, F. (2018). Effects of supply chain management on tomato export in Iran: Application of structural equation modeling. Journal of Food Products Marketing24(2), 177-195. https://doi.org/10.1080/10454446.2017.1266552
  21. Ferreira, R. B., Monteiro, S. A. R. A., Freitas, R., Santos, C. N., Chen, Z., Batista, L. M., Duarte, j., Borges, A., & Teixeira, A. R. (2007). The role of plant defence proteins in fungal pathogenesis. Molecular Plant Pathology8(5), 677-700. https://doi.org/10.1111/j.1364-3703.2007.00419.x.
  22. Ferrigo, D., Mondin, M., Ladurner, E., Fiorentini, F., Causin, R., & Raiola, A. (2020). Effect of seed biopriming with Trichoderma harzianum strain INAT11 on Fusarium ear rot and Gibberella ear rot diseases. Biological Control147, 104286. https://doi.org/10.1016/j.biocontrol.2020.104286.
  23. Fravel, D. R. (2005). Commercialization and implementation of biocontrol. Annual Review of Phytopathology Journal43(1), 337-359. https://doi.org/10.1146/annurev.phyto.43.032904.092924.
  24. Gandomi, H., Misaghi, A., Basti, A. A., Bokaei, S., Khosravi, A., Abbasifar, A., & Javan, A. J. (2009). Effect of Zataria multiflora essential oil on growth and aflatoxin formation by Aspergillus flavus in culture media and cheese. Food and chemical toxicology47(10), 2397-2400. https://doi.org/10.1016/j.fct.2009.05.024.
  25. Gholamnezhad, J., Arsalani, S., & Maleki, M. (2019). The investigation of the effect of garlic and thyme extracts on orange green mold (Penicillium digitatum), defense enzymes and genes expression. Plant Protection (Scientific Journal of Agriculture)42(1), 91-118. https://doi.org/10.22055/ppr.2019.14495
  26. Gupta, P., Gupta, H., Tripathi, S., & Poluri, K. M. (2023). Biochemical and metabolomic insights into antifungal mechanism of berberine against Candida glabrataApplied Microbiology and Biotechnology107(19), 6085-6102. https://doi.org/10.1007/s00253-023-12714-x.
  27. Haghpanah, M., Najafi-Zarini, H., & Babaeian-Jelodar, N. (2023). Differential physiological and molecular responses of susceptible and resistant tomato genotypes to Alternaria solaniJournal of Crop Protection12(3), 227-240. http://dorl.net/dor/20.1001.1.22519041.2023.12.3.1.3.
  28. Hemeda, H. M., & Klein, B. P. (1990). Effects of naturally occurring antioxidants on peroxidase activity of vegetable extracts. Journal of Food Science55(1), 184-185. https://doi.org/10.1111/j.1365-2621.1990.tb06048.x.
  29. He, Y., Yan, H., Hua, W., Huang, Y., & Wang, Z. (2016). Selection and validation of reference genes for quantitative real-time PCR in Gentiana macrophylla. Frontiers in Plant Science7, 945. https://doi.org/10.3389/fpls.2016.00945
  30. Hong, J. K., Jo, Y. S., Ryoo, D. H., Jung, J. H., Kwon, H. J., Lee, Y. H., & Park, C. J. (2018). Alternaria spots in tomato leaves differently delayed by four plant essential oil vapours. Research in Plant Disease24(24), 292-301. https://doi.org/10.5423/RPD.2018.24.4.292
  31. Iraji, A., Yazdanpanah, S., Alizadeh, F., Mirzamohammadi, S., Ghasemi, Y., Pakshir, K., & Zomorodian, K. (2020). Screening the antifungal activities of monoterpenes and their isomers against CandidaJournal of Applied Microbiology129(6), 1541-1551. https://doi.org/10.1111/jam.14740.
  32. ji Cho, H., Hong, S. W., Kim, H. J., & Kwak, Y. S. (2016). Development of a multiplex PCR method to detect fungal pathogens for quarantine on exported cacti. The Plant Pathology Journal32(1), 53. https://doi.org/10.5423%2FPPJ.NT.09.2015.0184.
  33. Jia, J., Ford, E., Hobbs, S. M., Baird, S. M., & Lu, S. E. (2022). Occidiofungin is the key metabolite for antifungal activity of the endophytic bacterium Burkholderia MS455 against Aspergillus flavusPhytopathology®112(3), 481-491. https://doi.org/10.1094/PHYTO-06-21-0225-R
  34. Karimi, S., Gholamnezhad, J., & Maleki, M. (2020). Control of Aspergillus and related aflatoxin production by using different plant extracts. BioControl in Plant Protection8(1), 117-136. https://doi.org/10.22092/bcpp.2020.124008.
  35. Kamangar, H., Hemmati, R., Yazdinejad, A., & Movahedi Fazel, M. (2014). Study on antifungal effects of five plant species extract against Fusarium solani and Rhizoctonia solani on bean. Iranian Journal of Plant Protection Science45(1), 49-58. https://doi.org/10.22059/ijpps.2014.52246.
  36. Kasahara, K., Miyamoto, T., Fujimoto, T., Oguri, H., Tokiwano, T., Oikawa, H., & Fujii, I. (2010). Solanapyrone synthase, a possible Diels–Alderase and iterative type I polyketide synthase encoded in a biosynthetic gene cluster from Alternaria solaniChemBioChem11(9), 1245-1252. https://doi.org/10.1002/cbic.201000173.
  37. Kumar, V., Haldar, S., Pandey, K. K., Singh, R. P., Singh, A. K., & Singh, P. C. (2008). Cultural, morphological, pathogenic and molecular variability amongst tomato isolates of Alternaria solani in India. World Journal of Microbiology and Biotechnology24, 1003-1009. https://doi.org/10.1007/s11274-007-9568-3.
  38. Lichtenthaler, H. K., & Wellburn, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biological Society Transaction, 11 (5), 591-592. https://doi.org/10.1042/bst0110591.
  39. Liu, W., Liu, K., Chen, D., Zhang, Z., Li, B., El-Mogy, M. M., & Chen, T. (2022). Solanum lycopersicum, a model plant for the studies in developmental biology, stress biology and food science. Foods11(16), 2402. https://doi.org/10.3390/foods11162402.
  40. Lotfi, A., Kottb, M., Elsayed, A., & Shafik, H. (2021). Antifungal activity of some Mediterranean seaweed against Macrophomina phaseolina and Fusarium oxysporum in vitroAlfarama Journal of Basic and Applied Sciences2(1), 81-96. https://doi.org/10.21608/ajbas.2020.41969.1031.
  41. Mahmoudi, E., Ahmadi, A., & Naderi, D. (2012). Effect of Zataria multiflora essential oil on Alternaria alternata in vitro and in an assay on tomato fruits. Journal of Plant Diseases and Protection119, 53-58. https://doi.org/10.1007/BF03356420.
  42. Meena, B. R., Meena, S., Chittora, D., & Sharma, K. (2021). Antifungal efficacy of Thevetia peruviana leaf extract against Alternaria solani and characterization of novel inhibitory compounds by Gas Chromatography-Mass Spectrometry analysis. Biochemistry and Biophysics Reports25, 100914. https://doi.org/10.1016/j.bbrep.2021.100914.
  43. Moghaddam, M., & Mehdizadeh, L. (2020). Chemical composition and antifungal activity of essential oil of Thymus vulgaris grown in Iran against some plant pathogenic fungi. Journal of Essential Oil Bearing Plants23(5), 1072-1083. https://doi.org/10.1080/0972060X.2020.1843547.
  44. Nejhad, A. A., Behbahani, B. A., Hojjati, M., Vasiee, A., & Mehrnia, M. A. (2024). Investigation of the inhibitory, fungicidal and interactive effects of the aqueous extract of Calotropis procera on Alternaria alternata, Alternaria solani, Saccharomyces cerevisiae, and Fusarium solaniin vitro”. Journal of Food Science and Technology (2008-8787)20(143).
  45. Narware, J., Singh, S. P., Manzar, N., & Kashyap, A. S. (2023). Biogenic synthesis, characterization, and evaluation of synthesized nanoparticles against the pathogenic fungus Alternaria solaniFrontiers in Microbiology14, 1159251. https://doi.org/10.3389/fmicb.2023.1159251.
  46. Nateqi, M., & Mirghazanfari, S. M. (2018). Determination of total phenolic content, antioxidant activity and antifungal effects of Thymus vulgaris, Trachyspermum ammi and Trigonella foenum-graecum extracts on growth of Fusarium solaniCellular and Molecular Biology64(14), 39-46. https://doi.org/10.14715/cmb/2018.64.14.7.
  47. Pusztahelyi, T., Holb, I. J., & Pócsi, I. (2015). Secondary metabolites in fungus-plant interactions. Frontiers in plant Science6, 573. https://doi.org/10.3389/fpls.2015.00573.
  48. Rana, K. M., Maowa, J., Alam, A., Dey, S., Hosen, A., Hasan, I., & Kawsar, S. M. (2021). In silico DFT study, molecular docking, and ADMET predictions of cytidine analogs with antimicrobial and anticancer properties. In Silico Pharmacology9, 1-24. https://doi.org/10.1007/s40203-021-00102-0.
  49. Rehmany, A. P., Grenville, L. J., Gunn, N. D., Allen, R. L., Paniwnyk, Z., Byrne, J., & Beynon, J. L. (2003). A genetic interval and physical contig spanning the Peronospora parasitica (At) avirulence gene locus ATR1Nd. Fungal Genetics and Biology38(1), 33-42. https://doi.org/10.1016/S1087-1845(02)00515-7.
  50. Ribera, A. E., & Zuñiga, G. (2012). Induced plant secondary metabolites for phytopatogenic fungi control: A review. Journal of Soil Science and Plant Nutrition12(4), 893-911. http://dx.doi.org/10.4067/S0718-95162012005000040.
  51. Rigotti, S., Viret, O., & Gindrat, D. (2003). Fungi from symptomless strawberry plants in Switzerland. Phytopathologia Mediterranea42(1), 85-88.
  52. Sajjadi, S. A., & Assemi, H. (2014). Study of antifungal activity of plant extracts of catmint, tobacco and thyme on tobacco pathogens fungal. Biological Control of Pests and Plant Diseases3(1), 41-52.
  53. Sánchez-Gómez, T., Santamaría, Ó., Martín-García, J., & Poveda, J. (2024). Seed extracts as an effective strategy in the control of plant pathogens: Scalable industry bioactive compounds for sustainable agriculture. Biocatalysis and Agricultural Biotechnology, 103332. https://doi.org/10.1016/j.bcab.2024.103332.
  54. Sareena, S., Poovannan, K., Kumar, K. K., Raja, J. A. J., Samiyappan, R., Sudhakar, D., & Balasubramanian, P. (2006). Biochemical responses in transgenic rice plants expressing a defence gene deployed against the sheath blight pathogen, Rhizoctonia solaniCurrent Science, 91 (11), 1529-1532.
  55. Sepehrvand, A., Ezatpour, B., Tarkhan, F., Bahmani, M., Khonsari, A., & Rafieian-Kopaei, M. (2017). Phytotherapy in fungi and fungal disease: A review of effective medicinal plants on important fungal strains and diseases. International Journal of Pharmaceutical Sciences and Research8(11), 4473-4495. https://doi.org/13040/IJPSR.0975-8232.8(11).4473-95.
  56. Serag, A., Salem, M. A., Gong, S., Wu, J. L., & Farag, M. A. (2023). Decoding metabolic reprogramming in plants under pathogen attacks, a comprehensive review of emerging metabolomics technologies to maximize their applications. Metabolites13(3), 424. https://doi.org/10.3390/metabo13030424.
  57. Shahriari, D., Alibeyk Tehrani, N., & Maleki, M. (2017). The inhibitory effect of Thymus vulgaris and Carum copticum essential oil on the growth of Rhizoctonia solani, the causal agent of potato stem canker in vitro and greenhouse conditions. Applied Plant Protection6(2), 97-107.
  58. Shalaby, S., & Horwitz, B. A. (2015). Plant phenolic compounds and oxidative stress: Integrated signals in fungal–plant interactions. Current genetics61, 347-357. https://doi.org/10.1007/s00294-014-0458-6.
  59. Soltani, J., & Moghaddam, M. S. H. (2014). Diverse and bioactive endophytic Aspergilli inhabit Cupressaceae plant family. Archives of Microbiology196, 635-644. https://doi.org/10.1007/s00203-014-0997-8.
  60. Stepanova, M., & Korzhikova-Vlakh, E. (2022). Modification of cellulose micro-and nanomaterials to improve properties of aliphatic polyesters/cellulose composites: A review. Polymers14(7), 1477. https://doi.org/10.3390/polym14071477.
  61. Sudhakar, N., Nagendra-Prasad, D., Mohan, N., & Murugesan, K. (2007). Induction of systemic resistance in Lycopersicon esculentum PKM1 (tomato) against cucumber mosaic virus by using ozone. Journal of Virological Methods139(1), 71-77. https://doi.org/10.1016/j.jviromet.2006.09.013.
  62. Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution24(8), 1596-1599. https://doi.org/10.1093/molbev/msm092
  63. Verma, P. K., Verma, S., Pandey, N., & Chakrabarty, D. (2021). Antimicrobial products from plant biodiversity. Bioprospecting of Plant Biodiversity for Industrial Molecules, 8 (1). 153-173. https://doi.org/10.1002/9781119718017.ch8.
  64. Younesi, S., Salehzadeh, M., & Soleymani Pari, M. J. (2023). Control of strawberry gray mold fungus with combined application of different species of Trichoderma and salicylic acid. Journal of Microbial World16(1), 88-72.
CAPTCHA Image