ارزیابی گرده کلزاBrassica napus به‌عنوان مکمل روی کیفیت سن شکارگر Orius laevigatus Fieber (Hem.: Anthocoridae) پرورش یافته در شرایط آزمایشگاهی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه گیاهپزشکی، دانشکده کشاورزی،دانشگاه بوعلی سینا همدان، همدان، ایران

2 گروه گیاهپزشکی، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران

3 گروه پاتوبیولوژی، دانشکده دامپزشکی،دانشگاه بوعلی سینا همدان، همدان، ایران

10.22067/jpp.2024.88727.1198

چکیده

دانه گرده گیاهان جایگزین و مکمل غذایی مهمی برای تولیدمثل شکارگران مختلف از جمله سن­های شکارگر می­باشد. امروزه سن شکارگر Orius laevigatus، یک عامل مهارگر زیستی تجاری شده برای مهار آفات گلخانه­ای به­ویژه تریپس غربی گل استفاده می­شود. به این لحاظ، جدول زندگی این شکارگر، تحت تأثیر پنج رژیم غذایی شامل دانه گرده کلزا، تخم­های Ephestia kuehniella Zeller ،Sitotroga cerealella Oliveir ، تخمE. Kuehniell  + دانه گرده کلزا و تخم S. cerealella + دانه گرده کلزا، در شرایط دمایی °C 1±25، رطوبت نسبی 10±55 درصد و دوره نوری 16 ساعت روشنایی و هشت ساعت تاریکی مورد بررسی قرار گرفت. تجزیه داده­ها براساس روش جدول زندگی سن-مرحله دو جنسی انجام شد. نتایج نشان داد که بیشترین میزان طول عمر 01/1±14/27 روز و تعداد تخم گذاشته شده 24/9±75/89 عدد در تغذیه با تخم بید آرد و دانه گرده کلزا محاسبه شد. بیشترین مقدار پراسنجه نرخ ذاتی افزایش جمعیت (r)، 008/0±196/0 (ماده/ ماده/­ روز) در تیمار تخم بید آرد همراه با دانه گرده کلزا و کمترین مقدار در تیمار دانه گرده کلزا 017/0±016/0 (ماده/ ماده/ روز) مشاهده شد. بالاترین مقادیر نرخ خالص تولید­­مثل (R0) و نرخ ناخالص تولید­مثل (GRR) به‌ترتیب 21/6±45/38 و 7/9±6/67 (تخم/ فرد) در تغذیه با ترکیب تخم بید آرد و دانه گرده کلزا محاسبه شد. طول دوره مراحل زیستی، نرخ متناهی افزایش جمعیت (λ)، مدت زمان یک نسل (T) دارای تفاوت معنی­دار، امّا نسبت جنسی فاقد تفاوت معنی­دار آماری در تمام تیمارها بود. با توجه به تفاوت­های آماره­های رشد سن شکارگر O. laevigatus در تغذیه با تخم بید آرد و دانه گرده کلزا، به نظر می­رسد که این رژیم تغذیه­ای می­تواند گزینه مناسبی برای پرورش این شکارگر در انسکتاریوم­ها باشد. به امید آنکه با بومی­سازی این شکارگر بتوان در مهار آفات گلخانه­ای کشور قدم مؤثری برداشت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Assessment of Brassica napus Pollen as a Supplement on the Quality of the Predatory Bug Orius laevigatus Fieber (Hem.: Anthocoridae) Reared in Laboratory Conditions

نویسندگان [English]

  • Zolikha Mirzakhani 1
  • Mohammad khanjani 1
  • Mohammad Mehrabadi 2
  • Alireza Sazmand 3
1 Department of Plant Protection, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
2 Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
3 Department of Pathobiology, Faculty of Veterinary Medicine, Bu-Ali Sina University, Hamedan, Iran
چکیده [English]

Introduction
Pollen grain is an important food alternative and supplementary food for the reproduction of different predators, including predatory bugs. Today, Orius laevigatus Fieber is a commercialy biocontrol agent agains various pests of greenhouse crops, especially western flower thrips Frankliniella occidentalis (Pergande). This species does not enter reprodctive diapause allows it to successfully suppress thrips populations all year round, it can be an important factor in the integrated pest management of greenhouse pests. The first step in the implementation of a successful biological control program is the basic study of the biology of the biological agents, in order to better understand the behavior, biology, and ecology of insects and improve pest management strategies, it is necessary to study the effect quality of food on the growth, survival and reproduction of predators. These effects could be evaluated by calculating the demographic parameters, especially the intrinsic rate of increase (r) on predatory bug, reminded that the demographic parameters are affected by the quality of artificial diet and are very useful indicators for evaluation the suitability of diet. This research was conducted to study artificial diets on developmental time, fecundity, survival rate, and life table parameters of O. laevigatus and choosing the best suitable diet to optimize the mass rearing of this predatory bug.
 
Materials and Methods
The primary colony of O. laevigatus was obtained from the released buges in the sweet pepper greenhouse located in Flavarjan city, Isfahan Province. Insects reared on five diets including (eggs of Ephestia kuehniella, eggs of Sitotroga cerealella, Canlola pollen, eggs of E. kuehniella + Canola pollen and eggs of S. cerealella + canola pollen), in the growth chamber at 25 ± 1 ˚C, 55 ± 10% RH and a photoperiod 16: 8 h (L: D) and the parameters of age-stage, two sex life table of the insect were determined. The life table study was done with 100 identical eggs of the same age. After hatching, instar nymphs were fed on the mentioned diets every day. The data of Life table were analyzed according to the theory age -stage, two sex life table and statistically significant differences between different levels of diets were performed in the same software using the Paired Bootstrap test method at a five percent probability level.analysis of statistical differences between different levels of competition were performed in the same software using the Paired Bootstrap test method at a probability level of 5%. It should be mentioned that sex ratio on five diets, it was analyzed based on the Chi-Square test in SAS 9.4 software.
 
Results and Discussion
Analyses showed that the type of diet affected the duration of all nymphal period of O. laevigatus significantly. Total developmental time was significantly faster for O. laevigatus that fed on Ephestia kuehniella eggs + canola pollen compared with the other investigated treatments (8.85). Also, the longest development time was recorded when individuals fed on Canola pollen-only, showed a lag of about 8–9 days for females and males. Analysis of age-stage specific survival rate (Sxj) of O. laevigatus reared on different diets showed that although curves were similar among the artificial diets and overlapped with each other. The survival rate of immature and adult stages was highest when fed with E. kuehniella eggs + canola pollen. The highest lifetime fecundity (89.75eggs/female) was recorded for females fed E. kuehniella eggs + canola pollen and was significantly better than all other diets. The next best was Sitotroga cerealella eggs + canola pollen at 54.23 eggs/female. The poorest diet was Canola pollen alone (22.88 eggs/female). The intrinsic rate of a natural increase (r), net reproductive rate (Ro), and gross reproductive rate (GRR) were greater E. kuehniella eggs + canola pollen with than other diets. Research has shown that the reproduction and survival rate of natural enemies (predator/parasitoid) change significantly by feeding on pollen from different plants and this is because of the protein in pollen, which is high in canola pollen.
 
Conclusions
The most obvious finding that emerged from this study is that E. kuehniella eggs plus Canola pollen is the most appropriate diet due to its acceleration the development, high immature stages survivorship, and high reproduction rate. Canola pollen is an accessible and cheap food source that indicated alone was not accepted as suitable food and can be well included in the diet and as a supplementary diet and can also reduce the costs of mass production of the predator.

کلیدواژه‌ها [English]

  • Biological control
  • Life table
  • Mass rearing
  • Optimal diet

©2024 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

 

https://doi.org/10.22067/jpp.2024.88727.1198

  1. Amarathunga, D.C., Parry, H., Grundy, J., & Dorin, A. (2024). A predator–prey population dynamics simulation for biological control of Frankliniella occidentalis (Western Flower Thrips) by Orius laevigatus in strawberry plants. Biological Control, 188, [105409]. https://doi.org/10.1016/j.biocontrol.2023.105409.
  2. Aragón-Sánchez, M., Román-Fernández, L.R., Martínez-García, H., Aragón-García, A., Pérez-Moreno, I., & Marco-Mancebón, V.S. (2018). Rate of consumption, biological parameters, and population growth capacity of Orius laevigatus fed on Spodoptera exigua. BioControl, 63, 785–794. https://doi.org/10.1007/s10526-018-9906-4.
  3. Arijs, , & De Clercq, P. (2001). Development of an oligidic diet for Orius laevigatus nymphs using a deletion- addition approach. Mededelingen Faculteit Landbouw Wetenschappen Universiteit Gent, 66(4), 315-320.
  4. Awmack, C.S., & Leather, S.R. (2002). Host plant quality and fecundity in herbivorous insects. Annual Review of Entomology, 47, 817–844. https://doi.org/10.1146/annurev.ento.47.091201.145300.
  5. Ballal, C.R., & Yamada, K. (2016). Anthocorid predators. In: Omkar (ed) Ecofriendly pest management for food security. Elsevier, New York , 183–216. https://doi.org/10.1016/B978-0-12-803265-7.00006-3
  6. Barzman, , Bàrberi, P., Birch., A.N.E., Boonekamp, P., Dachbrodt-Saaydeh, S., Graf., B. Hommel, B., Jensen, J., Kiss, J., & Kudsk, P. (2015). Eight principles of integrated pest management. Agronomy for Sustainable Development, 35(4), 1199-1215. https://doi.org/10.1007/s13593-015-0327-9.
  7. Bellows, T.S., & Fisher, T.W. (1999). Handbook of Biological Control. Principles and Ap- plications of Biological Control. Academic Press, 1st ed 1046 pp.
  8. Bonte, M., & De Clercq, P. (2008). Developmental and reproductive fitness of Orius laevigatus (Hemiptera: Anthocoridae) reared on factitious and artificial diets. Journal of Economic Entomology, 101, 1127–1133. https://doi.org/10.1093/jee/101.4.1127.
  9. Bonte, M., & De Clercq, P. (2010 a). Influence of male age and diet on reproductive potential of Orius laevigatus (Hemiptera: Anthocoridae). Annals of the Entomological Society of America, 103, 597–602. https://doi.org/10.1603/AN09180.
  10. Bonte, M., & Clercq, P. (2010 b). Impact of artificial rearing systems on the developmental and reproductive fitness of the predatory bug, Orius laevigatus. Journal Insect Scince, 10, 104. https://doi.org/10.1673/031.010.10401.
  11. Bonte, M., & De Clercq, P. (2011). Influence of predator density, diet and living substrate on developmental fitness of Orius laevigatus. Journal of Applied Entomology, 135, 343–350. https:// doi.org/10.1111/j.1439-0418.2010.01554.x.
  12. Burgess, E.P.G., Stevens, P.S., Keen, G.K., Laing, W.A., & Christeller, J.T. (1991). Effects of protease inhibitors and dietary-protein level on the black field cricket Teleogryllus commodus. Entomologia Experimentalis et Applicata, 61, 123– https://doi.org/10.1111/j.1570-7458.1991.tb02404.x.
  13. Burgio, G., Tommasini, M., & Van Lenteren, J. (2004). Population dynamics of Orius laevigatus and Frankliniella occidentalis: A mathematical modelling approach. Bulletin of Insectology, 57(2), 131–135.
  14. Calixto, M., Bueno, V.H.P., Montes, F.S., Silva, A.C., & Van Lenteren J.C. (2013). Effect of different diets on reproduction, longevityand predation capacity of Orius insidiosus (Say) (Hemiptera: Anthocoridae). Biocontrol Science and Technology, 23, 1245-1255. https://doi.org/10.1080/09583157.2013.822850.
  15. Carey, J.R. (1993). Applied Demography for Biologists. Oxford University Press. New York, 206 pp.
  16. Caswell, H. (2001). Matrix Population Models. 2nd (Ed). Sinauer Associates, Sunderlands. MA. 722 pp.
  17. Chapman, R.F. (1998). The Insects: Structure and Function. 4th Cambridge University Press, Cambridge, 788 pp.
  18. Chi, H., & Liu, H. (1985). Two new methods for the study of insect population ecology. Bulletin of the Institute of Zoology Academia Sinica, 24, 225–240.
  19. Chi, H., & Su, H.Y. (2006). Age-stage, two-sex life tables of Aphidius gifuensis (Ashmead) (Hymenoptera: Braconidae) and its host Muzus persicae (Sulzer) (Homoptera: Aphididae) with mathematical proof of the relationship between female fecundity and the net reproductive rate. Enviromental Entomology, 35, 10-21. https://doi.org/10.1603/0046-225X-35.1.10.
  20. Chi, H., You, M., Smith, C.L., Kavousi, A., Özgökçe, M.S., Güncan, A., Tuan, S.J., Fu, J.W., Xu, Y.Y., Zheng, F.Q., Ye,B.H., Chu, D., Yu, Y., Gharekhani, G., Saska, P., Gotoh, T., Schneider, M.I., Bussaman, P., Gökçe, A., & Liu,T.X. (2020). Age-stage, two-sex life table: An introduction to theory, data analysis, and application. Entomologia Generalis, 40, 103-124. https://doi.org/10.1127/entomologia/2020/0936
  21. Chi, H. (2022). TWOSEX-MSChart: A computer program for the agestage, two-sex life table analysis. National Chung Hsing University. Taichung, Taiwan. Available from: http://140.120.197.173/Ecology/Download/Twosex- MSChart.zip.
  22. Chi, H., Güncan, A., Kavousi, A., Gharakhani, G.H., Atlihan, R., Salih Özgökçe, M., Shirazi, J., Amir-Maafi, M., Maroufpoor, M., & Taghizadeh, R. (2022). TWOSEX-MSChart: The key tool for life table research and education. Entomologia Generalis, 42(6), 845–849. http://dx.doi.org/10.1127/entomologia/2022/1851.
  23. Cocuzza, E., De Clercq, P., Lizzio, S., Van de Veire, M., Teirry, L., Degheele, L., & Vacante, V. (1997). Life tables and predation activity of Orius laevigatus and O. albidipennis at three constant temperatures. Entomologia Experimentalis et Applicata, 85, 189-198. https://doi.org/10.1046/j.1570-7458.1997.00249.x.
  24. Coll, M., & Guershon, M. (2002). Omnivory in terrestrial arthropods: Mixing plant and prey diets. Annual Review of Entomology, 47, 267–297. https://doi.org/10.1146/annurev.ento.47.091201.14520.
  25. De Clercq, P., Arijs, Y., Van Meir, T., Van Stappen, G., Sorgeloos, P., Dewettinck, K., Rey, M., Grenier, S., & Febvay, G. (2005). Nutritional value of brine shrimp cysts as a factitious food for Orius laevigatus (Heteroptera: Anthocoridae). Biocontrol Science Technology, 15, 467-479. https://doi.org/10.1080/09583150500086706.
  26. De Puysseleyr, V., Höfte, M., & De Clercq, P. (2014). Continuous rearing of the predatory anthocorid Orius laevigatus without plant materials. Journal Applied Entomology, 138, 45–51. http://doi.org/10.1111/jen.12063.
  27. Dicke, F.F., & Jarvis, J.L. (1962). The habits and seasonal abundance of Orius insidiosus (Say) (Hemiptera: Heteroptera: Anthocoridae) on corn. Journal of the Kansas Entomological Society, 35, 339-344.
  28. Frank, S.D. (2010). Biological control of arthropod pests using banker plant systems: Past progress and future directions. Biological Control, 52, 8–16. https://doi.org/10.1016/j.biocontrol.2009.09.011.
  29. Ferkovich, S.M., & Shapiro, J.P. (2005). Enhanced oviposition in the insidious flower bug, Orius insidiosus (Hemiptera: Anthocoridae) with a partially puriÞed nutritional factor from prey eggs. Florida Entomologist, 88, 253-257. https://doi.org/1653/00154040(2005)088[0253:EOITIF]2.0.CO;2.
  30. Funao, T., & Yoshiyasu, Y. (1995). Development and fecundity of Orius sauteri (Poppius) (Hemiptera: Anthocoridae) reared on Aphis gossypii Glover and corn pollen. Journal of Applied Entomology and Zoology, 39, 84–85. https://doi.org/10.1303/jjaez.39.84
  31. Gallego, F.J., Rodríguez-Gómez, A., Carmen Reche, M., Balanza, V., & Bielza, P. (2022). Effect of the amount of Ephestia kuehniella eggs for rearing on development, survival, and reproduction of Orius laevigatus. Insects, 13(250), 1-8. https://doi.org/10.3390/insects13030250
  32. Ge,Y., Liu, P., Zhang, L., Snyder, W.E., Smith, O.M., & Shi, W. (2019). A sticky situation: Honeydew of the pear psylla disrupts feeding by its predator Orius sauteri. Pest Managment. Science, 76, 75–84. https://doi.org/10.1002/ps.5498.
  33. Goss, J.A. (1968). Development, physiology, and biochemistry of corn and wheat pollen. Botanical Review. 34, 333–359. https://doi.org/ 10.1007/BF02985391.
  34. Hassanpour, M., Rostamian, P., Rafiee-Dastjerdi, H., Fathi, S.A.A., & Bagheri, M.R. (2014). Effect of feeding on pollen of different plants on life table parameters of the predatory bug, Orius laevigatus (Fieber) (Hem.: Anthocoridae). Agricultural Pest Management, 1(2), 13-22. (In Persian)
  35. Hocherl, N., Siede, R., Illies, I., Gatschenberger, H., & Tautz, J. (2012). Evaluation of the nutritive value of maize for honey bees. Journal of Insect Physiology, 58, 278–285. https://doi.org/10.1016/j.jinsphys.2011.12.001.
  36. Hulshof, J., & Jurchenko, O. (2000). Orius laevigatus in a choice situation: Thrips or pollen? Mededelingen Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen. Universiteit Gent, 65, 351-358.
  37. Isenhour, D.J., & Marston, N.L. (1981). Seasonal cycles of Orius insidiosus (Hemiptera: Anthocoridae) in Missouri soybeans. Journal of the Kansas Entomological Society, 54, 129-142.
  38. Kalushkov, P., & Hodek, I. (2001). New essential aphid prey for Anatis ocellata and Calvia quatuordecimguttata (Coleoptera: Coccinellidae). Biocontrol Science of Technology, 11, 35–39. http://dx.doi.org/10.1080/09583150020029727.
  39. Kavousi, A., Chi, H., Talebi, K., Bandani, A., Ashouri, A., & Hosseininaveh, V. (2009). Demographic traits of Tetranychus urticae (Acari: Tetranychidae) on leaf discs and whole leaves. Journal of Economic Entomology, 102, 595-601. https://doi.org/10.1603/029.102.0217.
  40. Khanamani, M., Basij, M., & Fathipour, Y. (2021). Effectiveness of factitious foods and artificial substrate in mass rearing and conservation of Neoseiulus californicus (Acari: Phytoseiidae). International Journal of Acarology, 47(4), 273–280. http://dx.doi.org/10.1080/01647954.2021.1895310.
  41. Kontodimas, D.C., Milonas, P.G., Stathas, G.J., & Economou, L.P. (2007). Life table parameters of the pseudococcid predators Nephus includens and Nephus bisignatus (Coleoptera: Coccinellidae). European Journal of Entomology, 104, 407-415. https://doi.org/ 10.14411/eje.2007.060.
  42. Leon-Beck M., & Coll, M. (2007). Plant and prey consumption cause similar reductions in cannibalism by an omnivo-rous bug. Journal of Insect Behavioral, 20, 67–76. http://dx.doi.org/10.1007/s10905-006-9063-y.
  43. Lu, B., Sun, M., Zhai,Y.F., Chen, H., Zheng, L., & Yu, Y. (2017). Evaluation of the biocontrol capacity of predatory bug Orius sauteri, reared on Sitotroga cerealella eggs, on Thrips palmi based on predatory functional response. Journal Plant Protection, 44, 875–876.
  44. Lundgren, J.G. (2009). Relationships of natural enemies and non-prey foods. Progress in biological control series, Springer, 7, 453. https://doi.org/10.1007/978-1-4020-9235-0.
  45. Mendoza, J.E., Balanzaa, V., Cifuentesa, D., & Bielzaa, P. (2020). Selection for larger body size in Orius laevigatus: Intraspecific variability and effects on reproductive parameters. Biological Control, 148, 104-110. https://doi.org/10.1016/j.biocontrol.2020.104310.
  46. Montserrat, M., Albajes, R., & Castane, C. (2000). Functional response of four heteropteran predators preying on greenhouse whitefly (Homoptera: Aleyrodidae) and western ßower thrips (Thysanoptera: Thripidae). Environmental Entomology, 29, 1075-1082. http://dx.doi.org/10.1603/0046-225X-29.5.1075.
  47. Mouden, S., Sarmiento, K.F., Klinkhamer, P.G., & Leiss, K.A. (2017). Integrated pest management in western flower thrips: past, present and future. Pest Management Science,73(5), 813–822. https://doi.org/10.1002/ps.4531.
  48. Nomikou, M., Sabelis, M.W., & Janssen, A. (2010). Pollen subsidies promote whitefly control through the numerical response of predatory mites. BioControl, 55(2), 253–260. http://dx.doi.org/10.1007/s10526-009-9233-x.
  49. Nothnagl, M., Kosiba, A., Alsanius, B., Anderson, P., & Larsen, R. (2008). Modelling population dynamics of Frankliniella occidentalis Pergande (thysanoptera: Thripidae) on greenhouse grown chrysanthemum. European Journal of Horticultural Science, 73(1), 12-22. https://doi.org/10.1079/ejhs.2008/539291
  50. Omkar, G.K., & Jyotsna, S. (2009). Performance of a predatory ladybird beetle, Anegleis cardoni (Coleoptera: Coccinellidae) on three aphid species. European Journal of Entomology, 106, 565–572. http://dx.doi.org/10.14411/eje.2009.071.
  51. Ozkan, C. (2007). Effect of food, light, and host instar on the egg load of the synovigenic endoparasitoid Venturia canescens (Hymenoptera: Ichneumonidae). Journal of Pest Science, 80, 79-83. http://dx.doi.org/10.1007/s10340-006-0155-4.
  52. Pilcher, C.D., Obrycki, J.J., Rice, M.E., & Lewis, L.C. (1997). Preimaginal development, survival, and field abundance of insect predators on transgenic Bacillus thuringiensis Environmental Entomology, 26, 446-454. https://doi.org/10.1093/ee/26.2.446.
  53. Rojas, M.G., Morales Ramos, J.A., & King, E.G. (2000). Two meridic diets for Perillus bioculatus (Heteroptera: Pentatomidae), a predator of Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Biological Control, 17, 92–99. https://doi.org/10.1006/bcon.1999.0780.
  54. Roulston, T.H., & Cane, J.H. (2000). Pollen nutritional content and digestibility for animals. Plant Systematics and Evolution, 222, 187–209. http://dx.doi.org/10.1007/BF00984102.
  55. Ryder, N.B. (1975). Notes on the stationary populations. Population Index, 41, 3-28.
  56. Sabelis, M.W. (1985).Reproductive Strategies. In W. Helle, & M.W. Sabelis, (Eds.), Spider Mites. Vol. 1A. Their Biology, Natural Enemies and Control, Amsterdam, Elsevier, 265–278. https://doi.org/10.1111/j.1570-7458.1987.tb03606.x
  57. Sanchez, J., & Lacasa, A. (2002). Modelling population dynamics of Orius laevigatus and albidipennis (hemiptera: Anthocoridae) to optimize their use as biological control agents of frankliniella occidentalis (thysanoptera: Thripidae). Bulletin of Insectology Research, 92(1), 77–88. https://doi.org/10.1079/BER2001136.
  58. Sarwar, M. (2016). Comparative life history characteristics of the mite predator Neoseiulus cucumeris (Oudemans) (Acari: Phytoseiidae) on mite and pollen diets. International Journal of Pest Management, 62, 140–148. https://doi.org/10.1080/09670874.2016.1146806.
  59. Shahim, H. (2011). Biology and reproductive life table of the predator Orius albidipennis (Reuter) on several different diets and some of its sexual and reproductive behaviors. M.Sc. Thesis, University of Mohaghegh Ardabili, Ardabil, Iran. 55 pp. (In Persian).
  60. Shakya, S., Coll, M., & Weintraub, P.G. (2009). Incorporation of intraguild predation into a pest management decision-making tool: The case of thrips and two pollen-feeding predators in strawberry. Journal of Economic Entomology, 103(4), 1086–1093. http://doi.org/10.1603/EC09373.
  61. Southwood, T.R.E., & Henderson, P.A. (2000). Ecological methods.3rd Blackwell, Oxford, United Kingdom, 575 pp.
  62. Specty, O., Febvay, G., Gringer, S., Delobet, B., Piotte, C., Pageaux, J.F., Ferran, A., & Guillaud, J. (2003). Nutritional plasticity of the predatory lady beetle Harmonia axyridis (Coleoptera: Coccinellidae): Comparision between natural and substitional prey. Archives of Insect Biochemistry and Physiology, 52, 483-487. http://dx.doi.org/10.1002/arch.10070.
  63. Stanley, R.G., & Linskins, H.F. (1974). Pollen: Biology, Biochemistry, Management. Springer, New York, 307 pp.
  64. Sun, Y.X., Hao, Y.N., & Liu, T.X. (2018). A β -carotene-amended artificial diet increases larval survival and be applicable inmass rearing of Harmonia axyridis. Biological Control, 123, 105–110. https://doi.org/10.1016/j.biocontrol.2018.04.010.
  65. Tan, J.G., Paradise, M.S., Levine, S.L., Bachman, P.M., Uffman, J.P., Jiang, C.J., & Carson, D.B. (2011). Development and survival of Orius insidiosus (Say) nymphs on encapsulated bee pollen-based diet in a Tier-I toxicity assay. Environmental Entomology, 40, 1613–1621. http://dx.doi.org/10.1603/EN11060.
  66. Throne, J.E., & Weaver, D.K. (2013). Impact of temperature and relative humidity on life history parameters of adult Sitotroga cerealella (Lepidoptera: Gelechiidae). Journal of Stored Products Research, 55, 128-133. http://dx.doi.org/10.1016/j.jspr.2013.10.003.
  67. Tommasini, M.G., van Lenteren, J.C., & Burgio, G. (2004). Biological traits and predation capacity of four Orius species on two prey species. Bulletin of Insectology, 57, 79–93.
  68. Vacante, V., Cocuzza, G.E., De Clercq, P., Van de Veire, M., & Teirry, L. (1997). Development and survival of Orius albidipennis and laevigatus (Het.: Anthocoridae) on various diets. BioControl, 42, 493-495. http://dx.doi.org/10.1007/BF02769809.
  69. Van de Veire, M. (1995). Integrated pest management in glasshouse tomatoes, sweet peppers and cucumbers in Belgium. Ph.D. Thesis, Ghent University, Belgium.
  70. Van Rijn, P.C.J., & Tanigoshi, L.K. (1999). Pollen as food for the predatory mites Iphiseius degenerans and Neoseiulus cucumeris (Acari: Phytoseiidae): dietary range and life history. Experimental and Applied Acarology, 23(10), 785–802. http://dx.doi.org/10.1023/A:1006227704122.
  71. Venzon, M., Janssen, A., & Sabelis, M.W. (2002). Prey preference and reproductive success of the generalist predator Orius laevigatus. Oikos, 97(1), 116–124. https://doi.org/10.1034/j.1600-0706.2002.970112.x.
  72. Wang, K., & Shipp, J. (2001). Simulation model for population dynamics of Frankliniella occidentalis (thysanoptera: Thripidae) on greenhouse cucumber. Environmental Entomology, 30(6), 1073–1081. https://doi.org/10.1603/0046-225X-30.6.1073.
  73. Yang, K., Wu, D., Ye, X.Q., Liu, D.H., Chen, J.C., & Sun, P.L. (2013). Characterization ofchemical composition of beepollen in China. Journal of Agricultural and Food Chemistry, 61, 708–718. http://dx.doi.org/10.1021/jf304056b.
  74. Yari, S., Hajizadeh, J., Hoseini, R., & Hoseininia, A. (2010). Influence of three diets on some biological characteristics of predatory bug Orius albidipennis (Hemiptera: Anthocoridae). Iranian Journal of Plant Protection Scince, 41(2), 293-303. (In Persian). https://dorl.net/dor/20.1001.1.20084781.1389.41.2.13.4.
  75. Yazdanpanah, S., Fathipour, Y., & Riahi, E. (2021). Pollen grains are suitable alternative food for rearing the commercially used predatory mite Neoseiulus cucumeris (Acari: Phytoseiidae). Systematic and Applied Acarology, 26, 1009–1020. http://dx.doi.org/10.11158/saa.26.5.14.
  76. Zhang, , Qin, Z., Liu, P., Yin, Y., Felton, G.W., & Shi, W. (2021). Influence of plant physical and anatomical characteristics on the ovipositional preference of Orius sauteri (Hemiptera: Anthocoridae). Insects, 12, 326. https://doi.org/10.3390/insects12040326.

 

CAPTCHA Image