ارزیابی مقدار باقی‌مانده قارچ‌کش‌های جدید داگونیس® SC 12.5% و آفیانس® 17% SC در مهار بیماری لکه موجی گوجه‌فرنگی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 بخش تحقیقات آفت‌کش‌ها، مؤسسه تحقیقات گیاه‌پزشکی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران

2 بخش تحقیقات بیماری‌های گیاهی، مؤسسه تحقیقات گیاه‌پزشکی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران

چکیده

بیماری لکه‌موجی یکی از بیماری‌های مهم گوجه‌فرنگی محسوب می‌شود که عوامل آن قارچ‌های A. alternata، A. Tenuissima و A. solani می‌باشند و در شرایط آب‌و‌هوایی گرم و مرطوب، نیمه‌مرطوب و معتدل ایجاد می‌شود. برای مهار شیمیایی این بیماری، از قارچ‌کش‌های داگونیس® (فلوکساپیروکساد 75 گرم بر لیتر + دیفنوکونازول 50 گرم بر لیتر)، آفیانس® (تتراکونازول 75  گرم بر لیتر + آزوکسی‌استروبین 95 گرم بر لیتر) و سیگنوم® (بوسکالید 252 گرم بر لیتر + پیراکلواستروبین 128 گرم بر لیتر) به‌ترتیب با مقادیر 1200 میلی‌لیتر، 600 میلی‌لیتر و 500 گرم در هکتار استفاده می‌شود. به‌منظور بررسی میزان باقی‌مانده این قارچ‌کش‌ها پس از محلول‌پاشی با قارچ‌کش‌های مذکور برای مهار بیماری لکه‌موجی گوجه‌فرنگی، آزمایشات در شرایط گلخانه‌ای واقع در استان البرز روی رقم SV4129 صورت گرفت. نمونه‌برداری از میوه‌ها در زمان‌های یک، دو، سه، چهار و پنج روز پس از محلول‌پاشی انجام شد. استخراج قارچ‌کش‌ها طبق روش‌های استاندارد ملی ایران صورت گرفت. اندازه‌گیری باقی‌مانده آن‌ها با دستگاه کروماتوگرافی مایع مجهز به تجزیه‌گر متوالی جرمی انجام و مقادیر محاسبه شده با مرز بیشینه مانده مجاز ملی و بین‌المللی مقایسه گردید. نتایج به‌دست آمده در مورد قارچ‌کش داگونیس®، نشانگر کاهش میزان باقی‌مانده آن به کمتر از مرز بیشینه مانده مجاز، دو روز پس از سم‌پاشی بود. میزان باقی‌مانده در نمونه‌های تیمار آفیانس®، نشان داد که باقی‌مانده آن پس از گذشت سه روز بعد از سم‌پاشی به‌مقدار برابر با مرز بیشینه مانده مجاز می‌رسد. بررسی باقی‌مانده سیگنوم® مشخص کرد که باقی‌مانده آن دو روز پس از سم‌پاشی به پایین‌تر از مرز بیشینه مانده مجاز می‌رسد. به این ترتیب، قارچ‌کش‌های آفیانس®، داگونیس® و سیگنوم® به‌ترتیب با مقادیر 600 و 1200 میلی‌لیتر و 500 گرم در هکتار با دوره‌های کارنس به‌ترتیب سه، دو و دو روز با توجه به‌میزان باقی‌مانده قارچ‌کش‌ها ایمن بوده و قابل توصیه برای مهار بیماری لکه‌موجی گوجه‌فرنگی هستند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of the Residue Levels of New Fungicides Dagonis® 12.5% SC and Affiance® 17% SC in the Control of Tomato Early Blight Disease

نویسندگان [English]

  • Mohsen Morowati 1
  • Kasra Sharifi 2
  • .Vahideh .Mahdavi 1
1 Pesticides Research Department, Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization, Tehran, Iran.
2 Plant Diseases Research Department, Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization, Tehran, Iran
چکیده [English]

Introduction
Tomato early blight is an important disease in tomato which is caused by Alternaria alternata, A. tenuissima and A. solani species, and occurs in a wide range of weather conditions all around the world. For the chemical control of this disease, the fungicides Dagonis® (fluxapyroxad 75 g L-1 + difenoconazole 50 g L-1) at a rate of 1200 mL ha-1, Affiance® (tetraconazole 75 g L-1 + azoxystrobin 95 g L-1) at a rate of 600 mL ha-1 and Signum® (boscalid 252 g L-1 + pyraclostrobin 128 g L-1) at rate of 500 g ha-1 were used. In order to evaluate residue levels of these fungicides, experiments were carried out under greenhouse conditions in Alborz province during the years 2020 to 2022.
Materials and Methods
In order to investigate the effect of Affiance®, Dagonis® and Signum® fungicides in controlling tomato early blight disease, experiments with 3 treatments and four replications were conducted in Alborz province under greenhouse conditions in the form of a completely randomized design. Control was considered without any spraying of these fungicides.
In order to measure the residue levels of these fungicides in the treated tomato fruits, samples were collected at 1, 2, 3, 4 and 5 days after spraying according to the Iran’s national standard method no. 8366/2005 entitled “Pesticides- Determination of pesticide residues in crops and livestock- sampling method”. Extraction of pesticides were carried out by Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) method and pesticide residue levels were measured by Liquid Chromatography Mass/Mass (LC-MS/MS) and the values were compared with the national and international Maximum Residue Limits (MRLs). For preparation and extraction, tomato samples were crushed and homogenized and 15 grams of the homogenized and crushed sample was weighed as a laboratory test sample. By adding 15 ml of acetonitrile containing 1% acetic acid, the overall extraction process was performed. Anhydrous magnesium sulfate, sodium chloride and sodium acetate adsorbents were used to complete the extraction process. By centrifugation, the organic phase was separated from the aqueous tissue and 5 ml of the organic phase obtained from this step was used for the cleanup step. For purification, magnesium sulfate adsorbents were used in order to remove excess water in the medium and PSA (Poly Secondary Amine) in order to remove large molecules, organic acids, proteins and other disturbing co-extractives. Finally, after centrifugation, 1 mL of the resulting organic phase was prepared after filtration for evaporation and then injection into the LC-MS/MS.
Calibration of LC-MS/MS
First, by directly injecting the standard solution (1 µg mL-1) of each of the pesticides alone to the MS detector, the fragmentation voltage of the parent ion (Precursor Ion) and the collision energy for each of the daughter ions (Daughter Ion) or product ions of each compound were optimized. In other words, at this stage, the best conditions for high-sensitivity detection were determined for each of the compounds.
Validation of the Method
According to the Sanco standard, three concentration levels were validated, which were made in acetonitrile solvent and tomato matrix. For this purpose, by diluting the mother solution appropriately, solutions were prepared at three different concentration levels of 0.05, 0.1, and 0.2 mg kg-1 of the mixture of the standards of pesticides under investigation in solvent and tomato matrix. Regarding the linear dynamic range (LDR) for all pesticides the beginning of the range is the same as the limit of quantitation (LOQ). The figures of acceptable merit and recovery in the range of 80.1 to 111% with RSD from 10 to 14.5% indicate the acceptability of the proposed analysis method.
Results and Discussion
The results obtained for the residue levels of Dagonis® fungicide consisting of fluxapyroxad and difenoconazole, showed that according to the MRL of fluxapyroxad (MRL= 0.2 mg kg-1), two days after spraying it was less than the MRL and difenoconazole residue levels was less than the MRL (MRL= 0.6 mg kg-1) one day after spraying. The amount of residue in Affiance® treatment samples, consisting of two fungicides, tetraconazole and azoxystrobin, showed that after 3 days of spraying, the residue of tetraconazole reached the MRL (0.1 mg kg-1) and the residue of the fungicide azoxystrobin was lower than the MRL (3 mg kg-1) one day after spraying. The results of the pesticide residue measured in the samples treated with Signum® consisting of boscalid and pyraclostrobin showed that the pyraclostrobin residue levels were lower that the MRL (1 mg kg-1) two days after spraying this fungicide, and boscalid residue was lower than the MRL (3 mg kg-1) after one day of spraying. In the control samples, the tested fungicides were not detectable.
Conclusions
Therefore, Affiance®, Dagonis® and Signum® fungicides at the rate of 600, 1200 ml and 500 g ha-1, with the pre-harvest intervals of 3, 2 and 2 days respectively, are safe considering the residue levels of them and are recommended to be used to control early blight disease in tomato.

کلیدواژه‌ها [English]

  • Alternaria
  • Chemical control
  • Food safety
  • Maximum Residue Limits
  • Pre-Harvest interval

©2024 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

  1. Abd-Elhaleem, Z.A. (2020). Pesticide residues in tomato and tomato products marketed in Majmaah province, KSA, and their impact on human health. Environmental Science and Pollution Research, Online Publication: 06 January 2020. 9 pp. https://doi.org/1007/s11356-019-07573-x
  2. Ahmadinejad, M., & Doodabi, A. (1986). Early blight disease caused by Alternaria solani Proceedings of the 9th Plant Protection Congress of Iran, Faculty of Agriculture, Isfahan University of Technology, Iran. pp. 62. https://conference.areeo.ac.ir/article_11102.html. (In Persian).
  3. Ahmed, M.A.I., Add El Rahman, T.A., & Khalid, N.S. (2016). Dietary intake of potential pesticide residues in tomato samples marketed in Egypt. Research Journal of Environmental Toxicology. 10: 213-219. https://doi.org/3923/rjet.2016.213.219
  4. Anonymous, (2022). Agricultural statistics. Ministry of Agriculture Jihad, Iran. pp. 123. (In Persian).
  5. Anonymous, (2022). FRAC Code List© (2022). frac.info/publications
  6. Anonymous, (2019). Registration Report of Dagonis-Part A, National assessment, Federal Republic of Germany.
  7. Arias, L.A., Bojaca, C.R., Ahumada, D.A., & Schrevens E. (2014). Monitoring of pesticide in tomato marketed in Bogota, Colombia. Food Control, 35(1), 213-217. https://doi.org/1016/j.foodcont.2013.06.046
  8. Bai, Y., & Lindhout, P. (2007). Domestication and breeding of tomatoes: What have we gained and what can we gain in the future? Annals of Botany100(5), 1085-1094. https://doi.org/1093/aob/mcm150
  9. Baimani, M., Hayati, J., & Shetab Bushehri, M. (2002). Determination of the dominant species of causal agent of Early blight disease of tomato and investigation on the best culture medium for the growth of the pathogen. Proceedings of the 15th Plant Protection Congress of Iran. University of Razi, Kermanshah. Karaj, Iran. pp. 176. (In Persian)
  10. British Standard (2008). Foods of plant origin — Determination of pesticide residues using GC-MS and/or LC-MS/MS following acetonitrile extraction/partitioning and clean-up by dispersive SPE— QuEChERS-method. BS EN 15662 (E). 81 pp.
  11. Chaerani, R., Remmelt, G., Stem, P., Roseland, E., & Voorrips, R.E. (2007). Assessment of early blight (Alternaria solani) resistance in tomato using a droplet inoculation method. Journal of General Plant Pathology,73(2): 96-103. https://doi.org/1007/s10327-006-0337-1
  12. Dillard, H., Cole, D., Hedges, T., Turner, A., Utete, D., Mvere, B., Agubba, M., & Wilkinson, P. (1995). Early Blight of Tomatoes. Zimbabwe Horticultural Crops Pest Management. NYSAES, Geneva NY. 2 pp.
  13. EFSA, (2021). Review of the existing maximum residue levels for tetraconazole according to Article 12 of Regulation (EC) No 396/2005. EFSA journal, 21 Dec. https://doi:10.2903/j.efsa.2022.7111.
  14. Elgueta, S., Valenzuela, M., Fuentes, M., Meza, P., Manzur, J.P., Liu, S., Zhao, G., & Correa, A. (2020). Pesticide residues and health risk assessment in tomatoes and lettuces from farms of Metropolitan region Chile. Molecules, 25, 355. https://doi.org/3390/molecules25020355
  15. EL-Tanany, M.M., Hafez, M.A., Ahmed, G.A., & Abd El-Mageed, M.H. (2018). Efficiency of biotic and abiotic inducers for controlling tomato early blight disease. Middle East Journal of Agricultural Research, 7(2), 650-670.
  16. Ershad, J. (1998). Fungi of Iran. Publications of the Iranian Research Institute of Plant Protection. 874 pp. https://press-iripp.areeo.ac.ir/book_1747.html. (In Persian).
  17. Eslami, Z., Mahdavi, V., & Tajdar-Oranj, B. (2021). Probabilistic health risk assessment based on Monte Carlo simulation for pesticide residues in date fruits of Iran. Environmental Science and Pollution Research, 28(31), 42037-42050. https://doi.org/1007/s11356-021-13542-0
  18. European Food Safety Authority (2021). Review of the existing maximum residue levels for tetraconazole according to Article 12 of Regulation (EC) No. 396/2005. https://doi.org/2903/j.efsa.2022.7111
  19. Fishel, F.M., & Dewdney, M.M. (2012). Fungicide Resistance Action Committee’s (FRAC) Classification Scheme of Fungicides According to Mode of Action. Pesticide Information Office, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. 7 pp. http://edis.ifas.ufl.edu
  20. Foolad, M.R., Ntahimpera, N., Christ, B.J., & Lin, G.Y. (2000) Comparison of field, greenhouse, and detached-leaflet evaluations of tomato germ plasm for early blight resistance. Plant Disease, 84(9), 967–972. https://doi.org/1094/PDIS.2000.84.9.967
  21. Gentili, E., Tarlazzi, S., Balzaretti, G., Romagnoli, C., Marchi, A., Manaresi, M., & Coatti, M. (2006). Boscalid plus pyraclostrobin based formulations for the control of fungal diseases on pome and stone fruits, strawberries and vegetables [Piedmont; Emilia-Romagna; Veneto]. Atti delle Giornate Fitopatologiche, 2, 35-40.   
  22. Hansen. M.A. (2009). Early Blight of Tomatoes. Plant Disease Fact Sheets. Virginia cooperative extension. Produced by Communications and Marketing, College of Agriculture and Life Sciences, Viginia Polytechnic Institute and State University. WWW.ext.vt.edu.
  23. Hepsag, F., & Kizildeniz, T. (2021). Pesticide residues and health risk appraisal of tomato cultivated in greenhouse from the Mediterranean region of Turkey. Environmental Sciences and Pollution Research, 28, 22551-22562. https://doi.org/1007/s11356-020-12232-7
  24. Jaliani, N. (1991). Tomato Early blight disease and its chemical control in Jiroft and Kahnuj region. Proceedings of 10th Plant Protection Congress of Iran. Faculty of Agriculture, University of Kerman, Iran. 118. https://conference.areeo.ac.ir/article_2009.html. (In Persian).
  25. Jankowska, M., Kaczynski, P., Hrynko, I., & Lozowicka, B. (2016). Dissipation of six fungicides in greenhouse-grown tomatoes with processing and health risk. Environmental Science and Pollution Research, 23, 11885-11900. https://doi.org/10.1007/s11356-016-6260-x
  26. Macar, O., Kalefetoğlu Macar, T., Yalçın, E., & Çavuşoğlu, K. (2022). Acute multiple toxic effects of Trifloxystrobin fungicide on Allium cepaScientific Reports12(1), 1-9. https://doi.org/10.1038/s41598-022-19571-0 
  27. Mahdavi, V., Eslami, Z., Gordan, H., Ramezani, S., Peivasteh-Roudsari, L., Maˈmani, L., & Mousavi Khaneghah, A., (2022). Pesticide residues in green-house cucumber, cantaloupe, and melon samples from Iran: A risk assessment by Monte Carlo Simulation. Environmental Research, 206. 44 pp. https://doi.org/1016/j.envres.2021.112563
  28. Mahdavi, V., Heris, M.E.S., Dastranj, M., Eslami, Z., & Aboul-Enein, H.Y. (2021). Assessment of pesticide residues in soils using a QuEChERS extraction procedure and LC-MS/MS. Water, Air, and Soil Pollution, 232(4), 159. https://doi.org/1007/s11270-021-05104-4
  29. Mazzini, F. (2009). Consento Duo: A new fungicide mixture for horticulture against Peronospora and Alternaria. Informatore Agrario Supplemento, 65(26), 14-15. https://www.sid.ir/paper/1053065/en
  30. National Assessment France (2020). Signum Risk Management. Registration Report, Part A, BAS 51607F. France.
  31. Olson, M. & Santos, B.M. (2012). Vegetable Production Handbook for Florida. 344 pp. https://www.slideshare.net/slideshow/2012-vpg/14890643.
  32. Rosenzweig, N., Hanson, L.E., Mambetova, S., Jiang, Q.W., Guza, C., Stewart, J., & Somohano, P. (2019). Fungicide sensitivity monitoring of Alternaria causing leaf spot of sugar beet (Beta vulgaris) in the Upper Great Lakes. Plant Disease103(9), 2263-2270. https://doi.org/10.1094/PDIS-12-18-2282-RE
  33. Salamzadeh, J., Shakoori, A., & Moradi, V. (2018). Occurrence of multiclass pesticide residues in tomato samples collected from different markets of Iran. Journal of Environmental Health and Science and Engineering, 16(3): 1-9. https://doi.org/1007/s40201-018-0296-4
  34. Saleem, A., & El-Shahir, A.A. (2022) Morphological and molecular characterization of some Alternaria species isolated from tomato fruits concerning mycotoxin production and polyketide synthase genes. Plants, 11(9), 1168. https://doi.org/3390/plants11091168
  35. Sharifi, K., Goudarzi, A., &Safaie Farahani, B. (2024). Efficacy of several new fungicides in control of tomato early blight disease. Journal of Applied Research in Plant Protection, 13(1), 59-71. com/p2720002. (In Persian)
  36. Shojaei, B., Tekkieh, L.E., & Rasouli, A.S. (2013). The necessity of integrated pest management in agriculture and its role in agricultural sustainability. First National Conference on Medicinal Plants and Sustainable Agriculture, Hamedan Province Hamedan, Iran. pp. 1-19. (In Persian)
  37. Stammler, G., Bohme, F., Philippi, J., Miessner, S., & Tegge, V. (2014) Pathogenicity of Alternaria species on potatoes and tomatoes. In Fourteenth Euro Blight Workshop PPO Special Report, 16, 85–96. https://www.researchgate.net/profile/Gerd-Stammler/publication/274379185_Pathogenicity_of_Alternaria-species_on_potatoes_and_tomatoes/links/551d2e7b0cf2000f8f9386c5/Pathogenicity-of-Alternaria-species-on-potatoes-and-tomatoes.pdf.
  38. Strathmann, S., Walker, S. and Barnes, J., (2011) June. Fluxapyroxad: A new broad-spectrum fungicide. In Phytopathology(Vol. 101, No. 6, pp. S172-S172). 3340 PILOT KNOB ROAD, ST PAUL, MN 55121 USA: AMER PHYTOPATHOLOGICAL SOC.
CAPTCHA Image