برهم‌کنش تغذیه‌ای بین کفشدوزک Adalia bipunctata و شته Myzus persicae پرورش‌یافته روی تیمارهای مختلف کودهای معدنی، آلی و زیستی

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه گیاه‌پزشکی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران

چکیده

فلفل‌دلمه (Capsicum annuum L.)، یکی از محصولات جالیزی مهم بومی مکزیک و کشورهای آمریکای جنوبی است. یکی از آفات عمده این گیاه شته‌ سبز هلو ((Sulzer) Myzus persicae) با پراکنش جهانی، پلی‌فاژ و چرخه‌ زندگی هولوسیکلیک می­باشد. از دشمنان طبیعی مهم این گونه شته، کفشدوزک دو نقطه­ای (Adalia bipunctata L.) می­باشد. این پژوهش روی گیاه فلفل‌دلمه رقم California Wonder تغذیه‌شده با تیمار مختلف محرک رشد گیاه در قالب طرح کاملاً تصادفی در شرایط گلخانه با دمای 5 ±25 درجه سلسیوس، رطوبت نسبی 10 ±65 درصد و نور طبیعی انجام شد. تأثیر محلول­پاشی سولفات روی بر گیاه فلفل‌دلمه­، افزودن کود آلی ورمی­کمپوست 30 درصد و کودهای زیستی Bacillus subtilis، Pseudomonas fluorescens، Glomus intraradices، G. intraradices × B. subtilis و G. intraradices × P. fluorescens به بستر بذری گیاه فلفل‌دلمه­ای مورد مطالعه قرار گرفت. شاخص تغذیه­ای سنین مختلف لاروی و حشره بالغ کفشدوزک شکارگر دو نقطه­ای پرورش­یافته روی شته سبز هلو، در شرایط آزمایشگاهی با دمای 2±25 درجه سلسیوس، رطوبت نسبی 5±65 درصد و دوره­ نوری 16 ساعت روشنایی و هشت ساعت تاریکی مورد بررسی قرار گرفت. بیشترین شاخص ECI لارو کفشدوزک A. bipunctata در تیمارهای B. subtilis، سولفات روی و P. fluorescens و کمترین مقدار آن در ورمی­کمپوست 30 درصد ثبت شد. مقادیر شاخص ECI بالغ شکارگر به‌طور معنی­داری در تیمارهای B. subtilis و P. fluorescens افزایش و در تیمار ورمی­کمپوست 30 درصد کاهش یافت. بیشترین وزن شفیره در تیمار B. subtilis (98/16 میلی‌گرم) و کمترین مقدار آن در تیمار ورمی‌کمپوست 30 درصد (32/11 میلی‌گرم) مشاهده شد. نتایج این بررسی نشان داد که تیمار خاک با کودهای زیستی (P. fluorescens و B. subtilis) روی شاخص­های تغذیه­ای کفشدوزک شکارگر تأثیر مثبت و معنی­داری داشت. بنابراین، می‌توان نتیجه گرفت که استفاده از کودهای زیستی برای تیمار خاک گیاه فلفل‌دلمه‌ای می‌تواند به‌‌عنوان مکملی برای برنامه مهار بیولوژیک شته سبز هلو (M. persicae) مورد استفاده قرار گیرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Nutritional Interaction between Ladybird, Adalia bipunctata and Aphid, Myzus persicae Reared on Different Treatments of Mineral, Organic and Biological Fertilizers

نویسندگان [English]

  • Mozhgan Mardani -Talaee
  • Jabraeil Razmjou
  • Gadir Nouri‐Ganblani
  • Mahdi Hassanpour
  • Bahram Naseri
Department of Plant Protection, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
چکیده [English]

Introduction
Plant growth-promoting treatments, including biological, organic and chemical fertilizers, can alter the biochemical composition of plants and affect multitrophic interactions. Beneficial soil microorganisms such as plant growth-promoting rhizobacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) can affect plant nutrient quality, secondary metabolites, enzymes, phytohormones and volatile organic compounds (VOCs), which can impact interactions between host plants, insect herbivores and natural enemies. Plant defenses against herbivores can be activated both directly and indirectly. PGPRs and AMFs can either increase or decrease the resistance of plants to pests. Fertilizers can influence the nutritional quality of plants, which is crucial for host selection by herbivorous insects. Plants treated with zinc have been shown to have a positive effect on sucking insects but a negative effect on chewing herbivores. Organic fertilizers such as vermicompost have proven to be effective in the biocontrol of sucking insects, as they promote vigorous plant growth, alter plant nutrition and strengthen plant defenses. The biochemical composition of plants affects the quality of insect pests and influences the life plan of predators and parasitoids. The quality of the prey, the nutritional value and the biochemistry of the host plants influence the abundance and performance of the predators. Nutritional parameters such as consumption index, efficiency of conversion of ingested food (ECI), relative consumption rates (RCR) and relative growth rate (RGR) provide information on predator performance. The study investigates the effects of different plant growth promotion treatments on the nutritional indices of Adalia bipunctata L. feeding on Myzus persicae (Sulzer), growing on treated Capsicum annuum under greenhouse conditions.
 
Materials and Methods
This study was conducted on California Wonder bell pepper plants treated with various fertilizers in a completely randomized design under greenhouse conditions at 25 ± 5 °C, 65 ± 10% RH and natural light. The effects of foliar spraying with zinc sulfate on bell pepper plants, the addition of 30% organic fertilizer from vermicompost and the addition of the biofertilizers Bacillus subtilis, Pseudomonas fluorescens, Glomus intraradices, G. intraradices × B. subtilis and G. intraradices × P. fluorescens to the seedbed of bell pepper plants were investigated. The nutritional index of different larval and adult stages of the two-spotted predatory ladybug beetle Adalia bipunctata reared on the green peach aphid, Myzus persicae, was studied under laboratory conditions at 25 ± 2 °C, 65 ± 5% RH and 16L:8D hours. The experiments were conducted with 20 replications per treatment, using a completely randomized design, and nutritional indices were calculated using Waldbauer's method. The study used Kolmogorov-Smirnov test for normality, ANOVA for analyzing effects on predatory ladybug feeding indices, Tukey test for significant differences, and Excel for diagram creation. Treatments were categorized into suitable and unsuitable groups using the Ward method in a dendrogram.
 
Results and Discussion
The highest ECI index of A. bipunctata larvae was observed in the B. subtilis, zinc sulfate and P. fluorescens and the lowest ones was recorded in vermicompost (30%). The ECI index of predator adult significantly increased in B. subtilis and P. fluorescens treatments and decreased ones in vermicompost (30%). The highest and lowest pupal weights were observed in B. subtilis (16.98 mg) and vermicompost (30%; 11.32 mg) treatments, respectively. The results of the cluster analysis of different fertilizer treatments based on nutritional indices and pupal weights indicated the existence of two groups, A and B; group A included two subgroups, A1 and A2. Subgroup A1 included vermicompost (30%) treatments, G. intraradices × B. subtilis and G. intraradices, control, and G. intraradices × P. fluorescens, while subgroup A2 included zinc sulfate treatment. Group B included bacterial treatments B. subtilis and P. fluorescens.
 
Discussion
The study found that host plant quality affects the nutritional fitness of herbivorous insects, which in turn influences predator population dynamics. Pupal weight, a fitness indicator, was positively correlated with fat content. The study highlights the importance of host plant quality in determining fecundity parameters. The results show that the treatment of the soil with biological fertilizers (P. fluorescens and B. subtilis) had a positive and significant effect on the parameters of the predatory. The study found that plant growth-promoting treatments affect tri-trophic interactions in bell pepper plants, M. persicae, and A. bipunctata. High soil fertility improves predator fitness and supports predator growth. Maintaining high fertility is beneficial for integrated pest management, but further field studies are needed.

کلیدواژه‌ها [English]

  • Bacillus subtilis
  • Biological fertilizer
  • Nutritional indices
  • Pseudomonas fluorescens
  • Zinc Sulfate

©2024 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

 

 

  1. Ali, A.M., Mohamed, D.S., Shaurub, E.H., & Elsayed, A.M. (2017). Antifeedant activity and some biochemical effects of garlic and lemon essential oils on Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae). Journal of Entomology and Zoology Studies, 5, 1476-1482.
  2. Alizamani, T., Shakarami, J., Mardani-Talaee, M., Zibaee, A., & Serrão, J.E. (2020). Direct interaction between micronutrients and bell pepper (Capsicum annum) to affect fitness of Myzus persicae (Sulzer). Journal of Plant Protection Research, 60, 253-262. https://doi.org/10.24425/jppr.2020.133319.
  3. Alloway, B.J. (2008). Zinc in soils and crop nutrition. International Zinc Association and International Fertilizer Association, 16, 135.
  4. Arancon, N.Q., Edwards, C.A., Yardim, E.N., Oliver, T.J., Byrne, R.J., & Keeney, G. (2007). Suppression of two-spotted spider mite (Tetranychus urticae), mealy bug (Pseudococcus sp) and aphid (Myzus persicae) populations and damage by vermicomposts. Crop Protection26(1), 29-39. https://doi.org/10.1016/j.cropro.2006.03.013.
  5. Barratt, B.I.P., Howarth, F.G., Withers, T.M., Kean, J.M., & Ridley, G.S. (2010). Progress in risk assessment for classical biological control. Biological Control52(3), 245-254. https://doi.org/1016/j.biocontrol.2009.02.012.
  6. Bashan, Y., & Levanony, H. (1990). Current status of Azospirillum inoculation technology: Azospirillum as achallenge for agriculture. Candian Journal of Microbiology, 36, 591-608. https://doi.org/10.1139/m90-105.
  7. Biere, A., & Goverse, A. (2016). Plant-mediated systemic interactions between pathogens, parasitic nematodes, and herbivores above-and belowground. Annual Review of Phytopathology54, 499-527.
  8. Chaoui, H., Edwards, C.A., Brickner, A., Lee, S.S., & Arancon, N.Q. (2002). Suppression of the plant diseases, Pythium (damping-off), Rhizoctonia (root rot) and Verticillium (wilt) by vermicomposts. In Brighton Crop Protection Conference Pests and Diseases, 2, 711-716.
  9. Chavez-Mendoza, C., Sanchez, C., Munoz Marquez, E., Sida Arreola, J.P., & Flores Cordova, M.A. (2015). Bioactive compounds and antioxidant activity in different grafted varieties of bell pepper. Antioxidants, 4(2), 427-446. https://doi.org/ 3390/antiox4020427.
  10. El-Refaie, R.M., Shaurub, E.S.H., Abd-Allah, G.E., Ebeid, A.A., & Abouelnaga, Z.S. (2024). Effect of four host plants on the life history and nutritional indices of Spodoptera Littoralis. International Journal of Tropical Insect Science 44, 1091–1101.
  11. Enriquez, T., Lievens, V., Nieberding, C.M., & Visser, B. (2022). Pupal size as a proxy for fat content in laboratory-reared and field-collected Drosophila species. Scientific Reports, 12(1), 12855. https://doi.org/10.1038/s41598-022-15325-0.
  12. Fenton, B., Kasprowicz, L., Malloch, G., & Pickup, J. (2010). Reproductive performance of asexual clones of the peach-potato aphid, Myzus persicae, (Homoptera: Aphididae), colonising Scotland in relation to host plant and field ecology. Bulletin of Entomological Research, 100(4), 451–460. https://doi.org/10.1017/S0007485309990447.
  13. Gadhave, K.R., Finch, P., Gibson, T.M., & Gange, A.C. (2016). Plant growth-promoting Bacillus suppress Brevicoryne brassicae field infestation and trigger density-dependent and density-independent natural enemy responses. Journal of Pest Science89, 985-992.
  14. Gouda, S., Kerry, R.G., Das, G., Paramithiotis, S., Shin, H.S., & Patra, J.K. (2018). Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiological Research, 206, 131-140. https://doi.org/1016/j.micres.2017.08.016.
  15. Hajek, A.E., & Eilenberg, J. (2018). Natural Enemies: An Introduction to Biological Control. Cambridge University Press. Cambridge, UK, 439 pp. https://doi.org/10.1017/9781107280267.
  16. Hassanvand, M., Shakarami, J., & Mardani-Talaee, M. (2020). Nutrition interaction between different mycorrhizal species and bell pepper,‎ Capsicum annum, and its effects on biological parameters of the green peach‎ aphid, Myzus persicae (Sulzer), under greenhouse conditions‎. Iranian Journal of Plant Protection Science50, 289-300. https://doi.org/10.22059/ijpps.2020.285107.1006898. (In Persian)
  17. Heinen, R., Biere, A., Harvey, J.A., & Bezemer, T.M. (2018). Effects of soil organisms on aboveground plant-insect interactions in the field: Patterns, mechanisms and the role of methodology. Frontiers in Ecology and Evolution6, 106. https://doi.org/3389/fevo.2018.00106.
  18. Hodek, I., & Honeck, A. (1996). Ecology of Coccinellidae, 1st Ed. Kluwer Academic Publishers, Dordrecht, Netherland, 464 pp. http://dx.doi.org/10.1007/978-94-017-1349-8.
  19. Honěk, A., Novák, I., Martinková, Z., Saska, P., Kulfan, J., Holecová, M., Jauschova, T., & Zach, P. (2023). Trophic ecology drives annual variation in abundance of Aphidophagous (Coccinellidae, Coleoptera and Chrysopidae, Neuroptera) and Phytophagous (Noctuidae, Lepidoptera) insects: Evidence from light traps. Annals of the Entomological Society of America, 116(2), 125-140. http://dx.doi.org/1093/aesa/saad002.
  20. Hunter, M.D., & Price, P.W. (1992). Playing chutes and ladders: Heterogeneity and the relative roles of bottom-up and top-down forces in natural communities. Ecology, 73, 724-732.
  21. Hwang, S.Y., Liu, C.H., & Shen, T.C. (2008). Effects of plant nutrient availability and host plant species on the performance of two Pieris butterflies (Lepidoptera: Pieridae). Biochemical Systematics and Ecology, 36(7), 505-513. https://doi.org/10.1016/j.bse.2008.03.001.
  22. Lazarević, J.M., & Perić-Mataruga, V.D. (2003). Nutritive stress effects on growth and digestive physiology of Lymantria dispar Jugoslovenska Medicinska Biohemija22(1), 53-59. https://doi.org/10.2298/JMH0301053L
  23. Leuck, D.B., & Perkins, W.D. (1972). A method of estimating fall armyworm progeny reduction when evaluating control achieved by host-plant resistance. Journal of Economic Entomology, 65(2), 482-483. https://doi.org/10.1093/jee/65.2.482.
  24. Mardani-Talaee, M., Gadir Nouri-Ganblani, G., Zibaee, A., Jabraeil Razmjou, J., Hassanpour, M., & Naseri, B. (2022). Effect of nutritional interaction between plant growth stimulants and peach green aphid (Myzus persicae Sulzer) on physiological processes of two-spotted ladybird (Adalia bipunctata). Plant Protection (Scientific Journal of Agriculture), 45(1), 65-82. https://doi.org/10.22055/PPR.2022.17365. (In Persian with English abstract).
  25. Mardani-Talaee, M., Nouri-Ganblani, G., Razmjou, J., Hassanpour, M., Naseri, B., & Asgharzadeh, A. (2016 a). Effects of chemical, organic and bio-fertilizers on some secondary metabolites in the leaves of bell pepper (Capsicum annuum) and their impact on life table parameters of Myzus persicae (Hemiptera: Aphididae). Journal of Economic Entomology, 109(3), 1231-1240. https://doi.org/10.1093/jee/tov389.
  26. Mardani‐Talaee, M., Nouri‐Ganblani, G., Razmjou, J., Hassanpour, M., Vivekanandhan, P., & Naseri, B. (2024). Bottom‐up effects of various plant growth promoting treatments on fitness parameters of Hippodamia variegata. Journal of Basic Microbiology, 65(3), e2400486. https://doi.org/10.1002/jobm.202400486.
  27. Mardani-Talaee, M., Razmjou, J., Nouri-Ganbalani, G., Hassanpour, M., & Naseri, B. (2017). Impact of chemical, organic and bio-fertilizers application on bell pepper, Capsicum annuum and biological parameters of Myzus persicae (Sulzer)(Hem: Aphididae). Neotropical Entomology46, 578-586. https://doi.org/10.1007/s13744-017-0494-2.
  28. Mardani-Talaee, M., Razmjou, J., Nouri-Ganbalani, G., Hassanpour, M., & Naseri, B. (2025). Bottom-up effects of different fertilizer on changes in the two sex life table of the ladybug beetle Adalia bipunctata Plant Protection (Scientific Journal of Agriculture), 48(1), 33-53. https://doi.org/10.22055/PPR.2025.48593.1781. (In Persian with English abstract)
  29. Mardani-Talaee, M., Zibaee, A., Nouri-Ganbalani, G., Rahimi, V., & Tajmiri, P. (2015). Effect of vermicompost on nutrition and intermediary metabolism of Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae). Archives of Phytopathology and Plant Protection48(8), 623-645. https://doi.org/1080/03235408.2015.1091154.
  30. Mardani-Talaee, M., Zibaee, A., Nouri-Ganblani, G., & Razmjou, J. (2016b). Chemical and organic fertilizers affect physiological performance and antioxidant activities in Myzus persicae (Hemiptera: Aphididae). Invertebrate Survival Journal13(1), 122-133. https://doi.org/10.25431/1824-307X/isj.v13i1.122-133.
  31. Mattson, W.J. (1980). Herbivory in relation to plant nitrogen content. Annual Review of Ecology and Systematics, 11, 119-161. https://doi.org/1146/annurev.es.11.110180.001003.
  32. Megali, L., Schlau, B., & Rasmann, S. (2015). Soil microbial inoculation increases corn yield and insect attack. Agronomy for Sustainable Development, 35, 1511-1519. https://doi.org/10.1007/s13593-015-0323-0.
  33. Mercer, N.H., & Obrycki, J.J. (2021). Impacts of larval diet on pre-imaginal development, survival and adult size of six species of Coccinellidae (Coleoptera). Journal of the Kansas Entomological Society93(3), 256-261. https://doi.org/10.2317/0022-8567-93.3.256
  34. Moon, D.C., Barnouti, J., & Younginger, B. (2013). Context‐dependent effects of mycorrhizae on herbivore density and parasitism in a tritrophic coastal study system. Ecological Entomology, 38(1), 31-39.
  35. Naeem, M., Aslam, Z., Khaliq, A., Ahmed, J.N., Nawaz, A., & Hussain, M. (2018). Plant growth promoting rhizobacteria reduce aphid population and enhance the productivity of bread wheat. Brazilian Journal of Microbiology, 49(1), 9–14. https://doi.org/10.1016/j.bjm.2017.10.005.
  36. Nathan, S.S., Chung, P.G., & Murugan, K. (2006). Combined effect of biopesticides on the digestive enzymatic profiles of Cnaphalocrocis medinalis (Guenée) (the rice leaffolder) (Insecta: Lepidoptera: Pyralidae). Ecotoxicology and Environmental Safety, 64(3), 382-389. https://doi.org/10.1016/j.ecoenv.2005.04.008 .
  37. Noret, N., Josens, G., Escarré, J., Lefèbvre, C., Panichelli, S., & Meerts, P. (2007). Development of Issoria lathonia (Lepidoptera: Nymphalidae) on zinc‐accumulating and nonaccumulating Viola species (Violaceae). Environmental Toxicology and Chemistry: An International Journal26(3), 565-571. https://doi.org/1897/06-413R.1.
  38. Obrycki, J.J., & Kring, T.J. (1998). Predaceous Coccinellidae in biological control. Annual Review of Entomology43(1), 295-321. https://doi.org/1146/annurev.ento.43.1.295.
  39. Priyanka, S.L., Jeyarani, S., Sathiah, N., Mohankumar, S., & Nakkeeran, S. (2023). Influence of host egg age on parasitic potential of the entomophagous, Telenomus remus Nixon (Hymenoptera: Scelionidae) against the Fall armyworm, Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae) and investigations on the developmental biology and ultrastructure of egg parasitoid immature stages. Egyptian Journal of Biological Pest Control33(1), 26. http://creativecommons.org/licenses/by/4.0/.
  40. Ramadan, M.M., Awadalla, S.S., Abdel-Hady, A.A., & Hassan, M.A. (2022). Effect of essential and factitious foods and their mixing on developmental performance and reproductive fitness of the ladybeetle, Hippodamia variegataJournal of Plant Protection and Pathology13(3), 63-68. https://doi.org/21608/jppp.2022.130670.1063.
  41. Razmjou, J., Mohammadi, M., & Hassanpour, M. (2011). Effect of vermicompost and cucumber cultivar on population growth attributes of the melon aphid (Hemiptera: Aphididae). Journal of Economic Entomology104(4), 1379-1383. https://doi.org/10.1603/EC10120.
  42. Ricupero, M., Dai, C., Siscaro, G., Russo, A., Biondi, A., & Zappalà, L. (2020). Potential diet regimens for laboratory rearing of the harlequin ladybird. BioControl65, 583-592. https://doi.org/1007/s10526-020-10021-2.
  43. Rubiya, R., Murugan, M., Shanthi, M., Krishnamoorthi, V., & Vellaikumar, S. (2019). Comparative feeding and digestive performance of four lepidopteran species of Larva on onion, Allium cepavar aggregatum as a host plant. International Journal of Current Microbiology and Applied Sciences8(6), 1692-1702. https://doi.org/10.20546/ijcmas.2019.806.202
  44. Saravanakumar, D., Lavanya, N., Muthumeena, B., Raguchander, T., Suresh, S., & Samiyappan, R. (2008). Pseudomonas fluorescens enhances resistance and natural enemy population in rice plants against leaffolder pest. Journal of Applied Entomology132(6), 469-479. https://doi.org/10.1111/j.1439-0418.2008.01278.x.
  45. Sarkar, S.C., Milroy, S.P., & Xu, W. (2022). Development and reproduction of a native generalist predator, Coccinella transversalis (Coleoptera: Coccinellidae), on the tomato potato psyllid, Bactericera cockerelli, with a greenhouse assay of biocontrol potential. Biological Control176, 105108. https://doi.org/1016/j.biocontrol.2022.105108.
  46. Schausberger, P., Peneder, S., Jürschik, S., & Hoffmann, D. (2012). Mycorrhiza changes plant volatiles to attract spider mite enemies. Functional Ecology26(2), 441-449. https://doi.org/10.1111/j.1365-2435.2011.01947.x.
  47. Scriber, J.M. (1993). Absence of behavioral induction in oviposition preference of Papilio glaucus (Lepidoptera: Papilionidae). The Great Lakes Entomologist, 26(2), 1. https://doi.org/22543/0090-0222.1811.
  48. Scriber, J.M., & Slansky, F.J. (1981). The nutritional ecology of immature insects. Annual Review of Entomology, 26, 183-211. https://doi.org/1146/annurev.en.26.010181.001151.
  49. Singh, M., Pande, H., Naik, J.H., Goswami, D., & Kaushal, B.R. (2019). Nutritional indices of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) on three different host plants. Indian Journal of Agricultural Research53(5), 536-541. https://doi.org/18805/IJARe.A-5272.
  50. Spiegel-Roy, P., & Goldschmidt, E. (2008). Biology of citrus. Cambridge University Press, Cambridge, UK, 230 pp.
  51. Stella de Freitas, T.F., Stout, M.J., & Sant'Ana, J. (2019). Effects of exogenous methyl jasmonate and salicylic acid on rice resistance to Oebalus pugnax. Pest Management Science, 75(3), 744-752. https://doi.org/1002/ps.5174.
  52. Sun, Y.X., Hao, Y.N., Riddick, E.W., & Liu, T.X. (2017). Factitious prey and artificial diets for predatory lady beetles: Current situation, obstacles, and approaches for improvement: A review. Biocontrol Science and Technology27(5), 601-619. https://doi.org/10.1080/09583157.2017.1324112.
  53. Tsai, C.J., Harding, S.A., Tschaplinski, T.J., Lindroth, R.L., & Yuan, Y. (2006). Genome‐wide analysis of the structural genes regulating defense phenylpropanoid metabolism in PopulusNew Phytologist172(1), 47-62. https://doi.org/10.1111/j.1469-8137.2006.01798.x.
  54. Valenzuela-Soto, J.H., Estrada-Hernández, M.G., Ibarra-Laclette, E., & DélanoFrier, J.P. (2010). Inoculation of tomato plants (Solanum lycopersicum) with growth-promoting Bacillus subtilis retards whitefly Bemisia tabaci Planta, 231, 397–410. https://doi.org/10.1007/s00425-009-1061-9.
  55. Waldbauer, G.P. (1968). The Consumption and Utilization of Food by Insects. In Advances in Insect Physiology, 5, 229-288. Academic Press. https://doi.org/10.1016/S0065-2806(08)60230-1.
  56. Wittman, J.T., & Aukema, B.H. (2019). Foliage type and deprivation alters the movement behavior of late instar European gypsy moth Lymantria dispar (Lepidoptera: Erebidae). Journal of Insect Behavior32, 24-37. https://doi.org/10.1007/s10905-019-09711-2.
  57. Yu Qin, Y.Q., Wang Fang, W.F., Zhang RunXiang, Z.R., Guo GuiMing, G.G., Fan RenJun, F.R., & Hao Chi, H.C. (2016). Effects of pupal weight on the fecundity and longevity of adults and the larval development of the next generation in Grapholitha molesta (Lepidoptera: Tortricidae). Acta Entomologica Sinica, 59, 985–

 

CAPTCHA Image