اثرات زیرکشندگی حشره‌کش‌های تیوسیکلام‌هیدروژن اکسالات و اسپیرومسیفن روی جدول زندگی و پیش‌بینی روند جمعیتی سفیدبالک گلخانه، Trialeurodes vaporariorum (Hemiptera: Aleyrodidae)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه گیاهپزشکی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران

2 مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان آذربایجان غربی، سازمان تحقیقات آموزش و ترویج کشاورزی، ارومیه، ایران

چکیده

سفیدبالک گلخانه، (Trialeurodes vaporariorum)، آفتی پلی‌فاژ با تعداد نسل زیاد است و از نظر اقتصادی آفت مهم گیاهان جالیزی و گلخانه‌ای می‌باشد. در این پژوهش، اثر غلظت­های کشنده و زیرکشنده دو حشره­کش تیوسیکلام هیدروژن اکسالات (LC25=76/58 میلی­گرم ماده موثره بر لیتر) و اسپیرومسیفن (LC25=57/175 میلی­گرم ماده موثره بر لیتر) بر فراسنجه­های جدول زندگی و پیش­بینی روند رشد جمعیت T. vaporariorum در شرایط آزمایشگاهی مورد ارزیابی قرار گرفت. روش مورد استفاده در زیست­سنجی­ها، غوطه­ور کردن برگ­های لوبیا حاوی پوره به مدت 20 ثانیه در ترکیب حشره­کش­های مذکور بود. مطالعات جدول زندگی با 50 عدد تخم هم­سن انجام یافت. تجزیه داده­ها با استفاده از تئوری جدول زندگی دو جنسی ویژه سن-مرحله رشدی و با استفاده از برنامه TWOSEX–MSChart انجام شد. نتایج نشان داد که استفاده از غلظت زیرکشنده تیوسیکلام هیدروژن اکسالات منجر به طولانی شدن مراحل نابالغ سفیدبالک گلخانه گردید. همچنین، هر دو حشره­کش تیوسیکلام ­هیدروژن اکسالات و اسپیرومسیفن باعث کاهش طول عمر حشرات کامل و میزان باروری T. vaporariorum نسبت به شاهد شد. استفاده از غلظت زیرکشنده حشره­کش­ها منجر به کاهش فراسنجه­های رشد جمعیت (r،  lو R0) سفیدبالک گلخانه گردید. میزان نرخ ذاتی افزایش جمعیت، نرخ متناهی افزایش جمعیت و نرخ خالص تولید­مثل ­ترتیب در شاهد، تیوسیکلام ­هیدروژن اکسالات و اسپیرومسیفن شامل (006/0±0525/0 بر روز، 006/0±05/1 بر روز و 73/0±21/4 نتاج)، (0004/0±0176/0 بر روز، 01/0±95/0بر روز و 10/0±29/0 نتاج) و (0002/0±0271/0 بر روز، 009/0±97/0 بر روز و 11/0±54/0نتاج) به دست آمد. . همچنین، نتایج حاصل از پیش­بینی­ روند جمعیتی سفیدبالک گلخانه با فراسنجه­های رشد جمعیت مطابقت داشت. به عنوان مثال، با افزایش مدت زمان یک نسل حشره (T)، در نتاجی که والدین آنها با غلظت زیرکشنده تیوسیکلام هیدروژن اکسالات تیمار شده بودند، سرعت رشد جمعیتی کمتری داشتند. مجموع نتایج این تحقیق نشان داد که هر دو حشره­­کش مورد استفاده می­توانند به عنوان حشره­کش های موثر در مدیریت سفیدبالک گلخانه مدنظر قرار گیرند.
 

کلیدواژه‌ها

موضوعات


©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

  1. Abdollahzadeh-Bovani, M., Mehrkhou, F., & Forouzan, M. (2024). Sublethal effects of thiocyclam hydrogen oxalate and spiromesifen on life table and population growth parameters of Encarsia formosa (Hymenoptera: Aphelinidae). Biological Control of Pests and Plant Diseases, 12(1), 111-131. https://doi.org/10.22059/jbioc.2024.376343.343

    1. Alegbejo, M.D., & Banwo, O.O. )2005(. Hosts of Bemisia tabaci Genn. in Northern Nigeria. Acta Phytopathologica et Entomologica Hungarica, 40(3-4), 417-422. https://doi.org/10.1556/aphyt.40.2005.3-4.24
    2. Alibakhshi, Z., Seddigh, S., & Tafaghodinia, B. )2020(. Chemical control optimization of Trialeurodes vaporariorum in gerbera commercial greenhouses. Journal of Crop Protection, 9(3), 421-437.
    3. Amini Jam, N., & Saber, M. (2018). Sublethal effects of imidacloprid and pymetrozine on the functional response of the aphid parasitoid, Lysiphlebus fabarum. Entomologia Generalis, 38(2), 173–190. https://doi.org/10.1127/entomologia/2018/0734
    4. Asadi, M., Rafiee–Dastjerdi, H., Nouri–Ganbalani, G., Naseri, B., & Hassanpour, M. (2019). Lethal and sublethal effects of five insecticides on the demography of a parasitoid wasp. International Journal of Pest Management, 65(4), 301–312. https://doi.org/10.1080/09670874.2018.1502899
    5. Avery, P.B., Simmonds, M.S., & Nicklin, J. (2015). Comparative growth and efficacy of Trinidadian strains of Isaria fumosorosea blastospores for controlling Trialeurodes vaporariorum on bean plants. Journal of Biopesticides, 8(1), 01-12. https://doi.org/10.57182/jbiopestic.8.1.1-12
    6. Basit, M., Saeed, S., Ahmad, M.,& Sayyed, A.H.(2013). Can resistance in Bemisia tabaci (Homoptera: Aleyrodidae) be overcome with mixtures of neonicotinoids and insect regulators? Crop Protection, 44, 135–141.https://doi.org/10.1016/j.cropro.2012.10.021
    7. Beheshti, A., Imani, S., Zahdi, H., Tirgari, S., & Abdi Gudarzi, M. (2022). Investigation of the sublethal effects of the insecticides Apel, Abacmetin and Amidachloropride on the life span of different life stages of greenhouse whiteflies (Trialeurodes vaporariorum) (Hem.: Aleyrodidae) in laboratory conditions. Quarterly Entomological Research Specialty (scientific-research), 14(1), 27-31. (in Persian).
    8. Bi, J.L., Toscano, N.C., & Ballmer, G.R. (2002). Greenhouse and field evaluation of six novel insecticides against the greenhouse whitefly Trialeurodes vaporariorum on strawberries. Crop Protection, 21, 49-55. https://doi.org/10.1016/S0261-2194(01)00063-1
    9. Bi, J.L., & Toscano, N.C. (2007). Current status of the greenhouse whitefly, Trialeurodes vaporariorum, susceptibility to neonicotinoid and conventional insecticides on strawberries in southern California. Pest Management Science, 63(8), 747-752. https://doi.org/10.1002/ps.1405
    10. Chen, X., Ma, K., Li, F., Lianq, P., Liu, Y., Guo, T., Song, D., Desneux, N., & Gao, X. (2016). Sublethal and transgenerational effects of sulfoxafor on the biological traits of thecotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae). Ecotoxicology, 25, 1841–1848. https://doi.org/10.1007/s10646-016-1732-9
    11. Chi, H. (1988). Life-table analysis incorporating both sexes and variable development rates among individuals. Environmental Entomology, 17, 26–34. https://doi.org/10.1093/ee/17.1.26
    12. Chi, H. (2020). TWOSEX-MSChart: A computer program for age stage, two-sex life table analysis. National Chung Hsing University, Taichung, Taiwan; available from http://140.120.197.173/ Ecology/Download/TWOSEX-MSChart.rar
    13. Chi, H. (2021). TIMING-MSChart: A computer program for the population projection based on age-stage, two-sex life table. National Chung Hsing University, Taichung, Taiwan. [online], Available: http: //140.120.197.173/Ecology
    14. 15. Chi, H., & Liu, H. (1985). Two new methods for the study of insect population ecology. Bulletin of the Institute of Zoology, Academia Sinica, 24, 225–240.
    15. Colvin, J., Omongo, C.A., Govindappa, M.R., Stevenson, P.C., Maruthi, M.N., Gibson, G., & Muniyappa, V. (2006). Host‐plant viral infection effects on arthropod‐vector population growth, development and behaviour: Management and epidemiological implications. Advances in Virus Research, 67, 419-452. https://doi.org/10.1016/S0065-3527(06)67011-5
    16. Cuthbertson, A.G.S., Buxton, J.H., Blackburn, L.F., Mathers, J.J., Robinson, K.A., Powell, M.E., Fleming, D.A., & Bell, H.A. (2012). Eradicating Bemisia tabaci Q biotype on poinsettia plants in the UK. Crop Protection, 42, 42–48. https://doi.org/10.1016/j.cropro.2012.08.009
    17. Dai, C., Ricupero, M., Wang, Z., Desneux, N., Biondi, A., & Lu, Y. (2021). Transgenerational effects of A neonicotinoid and a novel sulfoximine insecticide on the harlequin ladybird. Insects, 12, 681. https://doi.org/10.3390/insects12080681
    18. Desneux, N., Decourtye, A., & Delpuech, J.M. (2007). The sublethal effects of pesticides on beneficial arthropods. Annual Review of Entomology, 52, 81–106. https://doi.org/10.1146/annurev.ento.52.110405.091440
    19. Desneux, N., Fauvergue, X., Dechaume-Moncharmont, F.X., Kerhoas, L., Ballanger, Y., & Kaiser, L. (2005). Diaeretiella rapae limits Myzus persicae populations after applications of deltamethrin in oilseed rape. Journal of Economic Entomology, 98(1), 9–17. https://doi.org/10.1093/ jee/98.1.9
    20. Duhan, J.S., Kumar, R., Kumar, N., Kaur, P., Nehra, K., & Duhan, S. (2017). Nanotechnology: The new perspective in precision agriculture. Biotechnology Reports, 15, 11–23. https://doi.org/10.1016/j.btre.2017.03.002
    21. Ebneabbasi, S., Mehrkhou, F., & Fourouzan, M. (2023). Lethal and sublethal effects of thiocyclam hydrogen oxalateand flubendimide on the population growth parameters and population projection of Tuta absoluta (Lepidoptera: Gelechiidae). Journal of Entomological Society of Iran, 43(3), 219-231. https://doi.org/10.61186/JESI.44.2.71
    22. Erdogan, C., SibelVelioglu, A., Gurkan, M.O., Denholm, I., & Moores, G.D. (2021). Detection of resistance to pyrothroid and neonicotinoid insecticide in the greenhouse whitefly, Trialeurodes vaporariorum (Hemiptera: Aleyrodidae). Crop Protection, 146, 105661. https://doi.org/10.1016/j.cropro.2021.105661
    23. Finney, D. J. (1971). Probit Analysis. Third ed. Cambridge University Press, London
    24. Forouzan, M., & Sheikhi Garjan, A. (2023). Effect of sub lethal concentrations of thiocyclam insecticide on biological parameters of Liriomyza sativae (Diptera: Agromyzidae) under laboratory conditions. Journal of Entomological Society of Iran, 42(4), 279-290. https://doi.org/10.52547/jesi.42.4.3
    25. Gerling, D. (1990). Whiteflies: Their bionomics, pest status and management. Winborne, Uk, Intercept. 348 pp.
    26. Guedes, R.N.C., Smagghe, G., Stark, J.D., & Desneux, N. (2016). Pesticide-induced stress in arthropod­ pests for optimized integrated pest management programs. Annual Review of Entomology, 61, 43-62. https://doi.org/10.1146/annurev-ento-010715-023646
    27. Haddi, K., Mendes, M.V., Barcellos, M.S., Lino-Neto, J., Freitas, H.L., Guedes, R.N.C., & Oliveira, E.E. (2016). Sexual success after stress Imidacloprid-induced hormesis in males of the neotropical stink bug Euschistus heros. PLoS One, 11(6), 1–18. https://doi.org/10.1371/journal.pone.0156616
    28. Heidari, A., Moharramipour, S., Poormirza, A.A., & Talebi, A.A. (2005). Effects of pyriproxifen, buprofezin and fenpropathrin on the growth population parameters in Trialeurodes vaporariorum Westwood (Hom.: Aleyrodidae). Iranian Journal of Agricultural Science, 36(2), 353-361.
    29. Hosseininia, A., Khanjani, M., Khoobdel, M., & Javadi, S. (2017). Comparision of the efficiency of the current oils and insecticide compounds in control of greenhouse whitefly, Trialeurodes Vaporariorum (Westwood), (Hem.: Aleyrodidae) on rose and their interaction. Journal of Plant Protection, 30(4), 718-726. https://doi.org/10.22067/jpp.v30i4.53965
    30. Hudson, L. A., & Ciborowski, J. J. (1996). Teratogenic and genotoxic responses of larval Chironomus salinarius group (Diptera: Chironomidae) to contaminated sediment. Environmental Toxicology and Chemistry: An International Journal, 15(8), 1375-1381. https://doi.org/10.1002/etc.5620150817
    31. Kapantaidaki, D.E., Sadikoglou, E., Tsakireli, D., Kampanis, V., Stavrakaki, M., Schorn, C., Ilias, A., Riga, M., Tsiamis, G., Nauen, R., Skavids, G., Vontas, J., & Tsagkarakou, A. (2018). Insecticide resistance in Trialeurodes vaporariorum population and novel diagnostics for kdr mutation. Pest Management Science, 74(1), 59-69. https://doi.org/10.1002/ps.4674
    32. Karatolos, N., Denholm, I., Williamson, M., Nauen, R., & Gorman, K. (2010). Incidence and characterisation of resistance to neonicotinoid insecticides and pymetrozine in the greenhouse whitefly, Trialeurodes vaporariorum Westwood (Hemiptera: Aleyrodidae). Pest Management Science, 66, 1304-1307. https://doi.org/10.1002/ps.2014
    33. Kumar, A., & Singh, R. (2014). Bioefficacy of some insecticides against the greenhouse whitefly, Trialeurodes vaporariorum, Westwood (Homoptera: Aleyrodidae) on tomoto. The Bioscan, 9(3), 1073-1076.
    34. Kumari, S., Chauhan, U., Kumari, A., & Nadda, G. (2017). Comparative toxicities of novel and conventional acaricides against different stages of Tetranychus urticae Koch (Acarina: Tetranychidae). Journalof the Saudi Society of Agricultural Sciences, 16, 191-196. https://doi.org/10.1016/j.jssas.2015.06.003
    35. Lahiri, S., Smith, H.A., Gireesh, M., Kaur, G., & Montemayor, J.D. (2022). Arthropod pest management in strawberry. Insects, 13(5), 475. https://doi.org/10.3390/insects13050475
    36. Lu, Y.H., Zheng, X.S., & Gao, X.W. (2016). Sublethal effects of imidacloprid on the fecundity, longevity, and enzyme activity of Sitobion avenae (Fabricius) and Rhopalosiphum padi (Linnaeus). Bulletin of Entomological Research, 106, 551–559. https://doi.org/10.1017/S0007485316000286
    37. Mahmoodi, L., Mehrkhou, F., Guz, N., Forouzan, M., & Atlihan, R. (2020). Sublethal effects of three insecticides on fitness parameters and population projection of Brevicoryne brassicae (Hemiptera: Aphididae). Journal of Economic Entomology, 113(6), 2713-2722. https://doi.org/10.1093/jee/toaa193
    38. Menke, S., & Gerhard, D. (2010). Detection of a related difference in efficacy of Azadirachtin treatments for the control of whiteflies on Gerbera jamesonii by testing for interactions in generalized linear models. Pest Management Science, 66(4), 358-364. https://doi.org/10.1002/ps.1881
    39. Mota-Sanchez, D., & Wise, J.C. (2023). Arthropod pesticide resistance database. Retrieved from https://www. pesticideresistance.org/
    40. ­Nasruddin, A., Jumardi, J., & Melina, M. (2021). Population dynamics of Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae) and its populations on different planting dates and host plant species. Annals of Agricultural Sciences, 66, 109-114. https://doi.org/10.1016/j.aoas.2021.08.001
    41. Nikakhtar, S., Aramideh, S., Mirfakhraei, S., & Forouzan, M. (2022). The effect of sublethal concentration of three commercial formulations of neem including Kofa, NeemAzal and Nimbecidine on the life table parameters of the greenhouse whitefly, Trialeurodes vaporariorum (Hem., Aleyrodidae). Journal of Entomological Society of Iran, 42(4), 313-323. https://doi.org/10.52547/jesi.42.4.6
    42. Nourbakhsh, S. (2019). List of pests, diseases and weeds of the most important major agricultural products, pesticides and recommended methods for their control. The Ministry of Agriculture Jihad, 222 p. (in Persian).
    43. Omer, A.D., & Leigh, T.F. (1995). Sublethal effects of acephate and biphenate on fecundity, longevity and egg viability in greenhouse whitefly (Hom., Aleyrodidae). Journal of Applied Entomology, 119, 119-125.
    44. Patra, B., & Kumar Hath, T. (2022). Insecticide resistance in whiteflies Bemisia tabaci (Gennadius): Current global status. In Insecticides – Impact and Benefits of Its Use for Humanity. IntechOpen. https://doi.org/10.5772/intechopen.101954
    45. Pavela, R. (2009). Larvicidal effects of some Euro-Asiatic plants against Culex quinquefasciatus Say larvae (Diptera: Culicidae). Parasitology Research, 105, 887-892. https://doi.org/10.1007/s00436-009-1511-0
    46. Piri Ouchtape, M., Mehrkhou, F., & Foorouzan, M. (2024). Lethal and sub-lethal effects of Clothianidin and summer oil on the life table parameters and population trend of the cabbage aphid, Brevicoryne brassicae (Hem.: Aphididae). Plant Pest Research, 13(4), 17-34. https://www.magiran.com/p2692727
    47. Prijović, M.R., Marčić, D., Drobnjaković, T.M., Međo, I.S., & Perić, P. (2013). Life history traits and population growth of greenhouse whitefly (Trialeurodes vaporariorum Westwood) on different tomato genotypes. Pesticides and Phytomedicine/Pesticidi i fitomedicina, 28(4), 239-245. https://doi.org/10.2298/PIF1304239P
    48. Prince, G., & Chandler, D. (2020). Susceptibility of Myzus persicae, Brevicoryne brassicae and Nasonovia ribisnigri to fungal biopesticides in laboratory and field experiments. Insects, 11(1), 55. https://doi.org/10.3390/insects11010055
    49. Rajaee, F., Ghane-Jahromi, M., Maroofpour, N., & Sedaratian-Jahromi, A. (2022). Sublethal effects of spiromesifen on life table traits of Tetranychus urticae (Acari: Tetranychidae) and Neoseiulus californicus­ (Acari: Phytoseiidae). Acarologia, 62(3), 772-785. https://doi.org/10.24349/uja8-5ks2
    50. Rakhshani, M. (2005). Principle of Agricultural Toxicology (Pesticides). Farhang Jame Press Center of Tehran, Iran, p. 100-374. (In Persian).
    51. Reshadat-Salvanagh, N., Mehrkhou, F., &Fourouzan, M. (2024). Lethal and sublethal effects of Flonicamid and BIo2 on life span and population growth parameters of greenhouse whitefly, Trialeurodes vaporariorum, (Hemiptera: Aleyrodidae). Phytoparasitica, 52, 90. https://doi.org/10.1007/s12600-024-01209-8.
    52. Rezaei, Z., Ghane-Jahromi, M., Sedaratian, H., & Sahraeian, H. (2016). Investigation sub-lethal effects of thiocyclam hydrogen-oxalate on reproductive and population growth parameters of Tuta absoluta (Lep.:Gelechidae). Proceedings of 22nd Iranian Plant Protection Congress College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran. (Available: https://sid.ir/paper/937985/en)
    53. Safavi, S.A., & Bakhshaei, M. (2017). Biological parameters of Trialeurodes vaporariorum (Hemiptera: Aleyrodidae) exposed to lethal and sublethal concentrations of Calypso ®. Journal of Crop Protection, 6(3), 341 -351. http://dorl.net/dor/20.1001.1.22519041.2017.6.3.9.9
    54. Saidi, Z., & Ziaei, M. (2017). The toxicity of Sivanto ® and Ebron Speed ® insecticides to control sugarcane whitefly, Nemaskellia andropogonis, (Hem.: Aleyrodidae) in laboratory conditions. Plant Pest Research, 8(2), 53-65. (in Persian(. https://doi.org/10.22124/iprj.2018.2995
    55. Salvanagh, N.R., Mehrkhou, F., & Fourozan, M. (2024). Lethal and sublethal effects of Flonicamid and BIo2 on life span and population growth parameters of greenhouse whitefly, Trialeurodes vaporariorum, (Hemiptera: Aleyrodidae). Phytoparasitica, 52(5), 90.‏
    56. Sarbaz, S., Goldasteh, S., Zamani, A.A., Solymannejadiyan, E., & Vafaei Shoushtari, R. (2017). Side effects of spiromesifen and spirodiclofen on life table parameters of the predatory mite, Neoseiulus californicusMcGregor (Acari: Phytoseiidae). International Journal of Cardiology, 43, 380-386. https://doi.org/10.1080/01647954.2017.1325396
    57. Schmuttere, H. (2002). The Neem tree: Source of Unique Natural Products for Integrated Pest Management, Medicine, Industry and Other Purposes (Hardcover), 2nd Edition, Weunheim, Germany: VCH Verlagsgesellschaft, p. 120-138.
    58. Sedaratian, A., Fathipour, Y., Talaei-Hassanloui, R., & Jurat-Fuentes, J.L. (2013). Fitness costs of sublethal exposure to Bacillus thuringiensis in Helicoverpa armigera: A carryover study on offspring. Journal of Applid Entomology, 137, 540-549. https://doi.org/10.1111/jen.12030
    59. Shahbazvar, N., Sahragard, A., Hosseini, R., & Hajizadeh, J. (2011). A preliminarily study on adult characters of whiteflies (Hem.: Aleyrodidae). Entomofauna, Zeitshrift Fur Entomologie, 32(30), 413-420.

    61.­Shahmohammadi Heidari, B., Allahyari, H., & Talebi-Jahromi, Kh. (2022). Effect of mayonnaise and emulsifiable concentrate formulations on population dynamic of greenhouse whitefly (Trialeurodes vaporariorum). Iranian Journal of Plant Protection Science, 53(1), 131-141. (in persian). https://doi.org/10.22059/IJPPS.2022.339946.1007001

    1. Sharifiyan, M., Mehrkhou, F., & Negahban, M. (2024). Lethal and sublethal effects of Mentha piperita L. and its nanoeformulation form on the biological and population growth parameters of Trialeurodes vaporariorum (Westwood) under laboratory conditions. Journal of Entomological Society of Iran, 44(1), 25–41. https://doi.org.10.61186/jesi.44.1.3
    2. Sheikhigarjan, A., Najafi, H., Abbasi Azimi, H., & Moradi, M. (2021). The chemical and organic pesticide guide of Iran. Rah Dan Press, Tehran, Iran, p. 525.
    3. Simmonds, M.S.J., Manlove, J.D., Blaney, W.M., & Khambay, B.P.S. (2002). Effects of selected botanical insecticides on the behaviour and mortality of the glasshouse whitefly Trialeurodes vaporariorum and the parasitoid Encarsia formosa. Entomologia Experimentalis et Applicata, 102, 39-47. https://doi.org/10.1046/j.1570-7458.2002.00923.x
    4. SPSS, Inc. (2019). IBM SPSS statistics for windows, version 26.0 (Vol. 440). IBM Corporation.
    5. Stark, J.D., & Rangus, T.M. (1994). Lethal and sublethal effects of the neem insecticide formulation, ‘Margosan-O’, on the pea aphid. Pest Management Science, 41, 155–160. https://doi.org/10.1002/ps.2780410212 
    6. Subba, B., Pal, S., Mandal, T., & Ghosh, S.K. (2017). Population dynamics of whitefly (Bemisia tabaci Genn.) infesting tomato (Lycopersicon esculentus L.) and their sustainable management using biopesticides. Journal of Entomology and Zoology Studies, 5(3), 879-883.
    7. Talebi Jahromi, Kh. (2012). Pesticide toxicology. University of Tehran Press, Iran. 508 pp.
    8. Tan, Y., Biondi, A., Desneux, N., & Gao, X.W. (2012). Assessment of physiological sublethal effectsof imidacloprid on themirid bug Apolygus lucorum (Meyer-Dür). Ecotoxicology, 21, 1989–1997. https://doi.org/10.1007/s10646-012-0933-0
    9. Wang, R., Zhang, W., Che, W.N., Qu, C., Li, F.Q., Desneux, N., & Luo, C. (2017). Lethal and sublethal ­effects of cyantraniliprole, a new anthranilic diamide insecticide, on Bemisia tabaci (Hemiptera: ­Aleyrodidae). MEDcrop Protection, 91, 108–113.
    10. Wang, R., Zheng, H.X., Qu, C., Wang, Z.H., Kong, Z.Q., & Luo, C. (2016). Lethal and sublethal effectsof a novel cis-nitromethylene neonicotinoid insecticide, cycloxaprid, on Bemisia tabaci. Journal of Crop Protection, 83, 15–19. http://dx.doi.org/10.1016/j.cropro.2016.01.015
    11. Wintermantel, W.M., Hladky, L.L., Cortez, A.A., & Natwick, E.T. (2009). A new expanded host range­ of cucurbit yellow stunting disorder virus includes three agricultural crops. Plant Disease, 93(7), 685-690. https://doi.org/10.1094/PDIS-93-7-0685
    12. Xu, L., Zhao, C.Q., Zhang, Y.N., Liu, Y., & Gu, Z.Y. (2016). Lethal and sublethal effects of sulfoxaflor on the small brown planthopper Laodelphax striatellus. Journal of Asia-Pacific Entomology, 19, 683–689. https://doi.org/10.1016/j.aspen.2016.06.013
    13. Zapata, N., Vargas, M., Latorre, E., Roudergue, X., & Ceballos, R. (2016). The essential oil of Laurelia sempervirens is toxic to Trialeurodes vaporariorum and Encarsia formosa. Industrial Crops and Industrial Crops and Products, 84, 418-422. https://doi.org/10.1016/j.indcrop.2016.02.030
    14. Zawrah, M.F.M., Masry, A.T.E., Noha, L., & Saleh, A.A.A. (2020). Efficiacy of certain insecticides against whitefly Bemisia tabaci (Genn.) infesting tomato plants and their associated predators. Plant Archives, 20(2), 2221-2228.

     

CAPTCHA Image