اثرات زیرکشندگی حشره‌کش‌های تیوسیکلام‌هیدروژن اکسالات و اسپیرومسیفن روی جدول زندگی و پیش‌بینی روند جمعیتی سفیدبالک گلخانه، Trialeurodes vaporariorum (Hemiptera: Aleyrodidae)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه گیاهپزشکی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران

2 مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان آذربایجان غربی، سازمان تحقیقات آموزش و ترویج کشاورزی، ارومیه، ایران

چکیده

سفیدبالک گلخانه، (Trialeurodes vaporariorum)، آفتی پلی‌فاژ با تعداد نسل زیاد است و از نظر اقتصادی آفت مهم گیاهان جالیزی و گلخانه‌ای می‌باشد. در این پژوهش، اثر غلظت­های کشنده و زیرکشنده دو حشره­کش تیوسیکلام هیدروژن اکسالات (LC25=76/58 میلی­گرم ماده موثره بر لیتر) و اسپیرومسیفن (LC25=57/175 میلی­گرم ماده موثره بر لیتر) بر فراسنجه­های جدول زندگی و پیش­بینی روند رشد جمعیت T. vaporariorum در شرایط آزمایشگاهی مورد ارزیابی قرار گرفت. روش مورد استفاده در زیست­سنجی­ها، غوطه­ور کردن برگ­های لوبیا حاوی پوره به مدت 20 ثانیه در ترکیب حشره­کش­های مذکور بود. مطالعات جدول زندگی با 50 عدد تخم هم­سن انجام یافت. تجزیه داده­ها با استفاده از تئوری جدول زندگی دو جنسی ویژه سن-مرحله رشدی و با استفاده از برنامه TWOSEX–MSChart انجام شد. نتایج نشان داد که استفاده از غلظت زیرکشنده تیوسیکلام هیدروژن اکسالات منجر به طولانی شدن مراحل نابالغ سفیدبالک گلخانه گردید. همچنین، هر دو حشره­کش تیوسیکلام ­هیدروژن اکسالات و اسپیرومسیفن باعث کاهش طول عمر حشرات کامل و میزان باروری T. vaporariorum نسبت به شاهد شد. استفاده از غلظت زیرکشنده حشره­کش­ها منجر به کاهش فراسنجه­های رشد جمعیت (r،  lو R0) سفیدبالک گلخانه گردید. میزان نرخ ذاتی افزایش جمعیت، نرخ متناهی افزایش جمعیت و نرخ خالص تولید­مثل ­ترتیب در شاهد، تیوسیکلام ­هیدروژن اکسالات و اسپیرومسیفن شامل (006/0±0525/0 بر روز، 006/0±05/1 بر روز و 73/0±21/4 نتاج)، (0004/0±0176/0 بر روز، 01/0±95/0بر روز و 10/0±29/0 نتاج) و (0002/0±0271/0 بر روز، 009/0±97/0 بر روز و 11/0±54/0نتاج) به دست آمد. . همچنین، نتایج حاصل از پیش­بینی­ روند جمعیتی سفیدبالک گلخانه با فراسنجه­های رشد جمعیت مطابقت داشت. به عنوان مثال، با افزایش مدت زمان یک نسل حشره (T)، در نتاجی که والدین آنها با غلظت زیرکشنده تیوسیکلام هیدروژن اکسالات تیمار شده بودند، سرعت رشد جمعیتی کمتری داشتند. مجموع نتایج این تحقیق نشان داد که هر دو حشره­­کش مورد استفاده می­توانند به عنوان حشره­کش های موثر در مدیریت سفیدبالک گلخانه مدنظر قرار گیرند.
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Sublethal Effects of Thiocyclam hydrogen oxalate and Spiromesifen, on Life Table and Population Projection of Trialeurodes vaporariorum (Hemiptera: Aleyrodidae)

نویسندگان [English]

  • Mahsa Abdollahzadeh 1
  • Faiba Mehrkhou 1
  • Maryam Fourouzan 2
1 Department of Plant Protection, Faculty of Agriculture, Urmia University, Urmia, Iran
2 Plant Protection Research Department, West Azarbaijan Agricultural and Natural Resources Research Center, Agricultural Research, Education and Extension Organization (AREEO), Urmia, Iran
چکیده [English]

Introduction
Greenhouse whitefly, Trialeurodes vaporariorum, Westwood (Hemiptera: Aleyrodidae) is one of the most serious pests of many horticultural and greenhouse crops that causes quantitative and qualitative damages in the yield of greenhouse products. However, various controlling methods (e.g., agronomic, mechanical, behavioral, and biological) are used for management of greenhouse whitefly pest, but usage of synthetic insecticides is the only easy and cost-effective strategy for dealing with arthropod pests in many crop production systems, which is more common controlling method in Iran. Due to the extensive usage of non-selective insecticides against T. vaporariorum, and their side effects on natural enemies, we used in the present study, selective, harmless, and eco-friendly insecticides. In this research, we evaluated the lethal and sublethal efficiency of two insecticides, thiocyclam hydrogen oxalate and spiromsifen. Thiocyclam hydrogen oxalate is a broad-spectrum systemic as well as a contact insecticide. It is highly effective against a wide range of insect pests, particularly sucking mouth parts (e. g., aphids, leafhoppers, and whiteflies). Spiromesifen, is known as a non-systemic insecticide which belongs to the spirocyclic pheny substituted tetronic acid class. It is effective against a broad spectrum of pests and it disrupts the biosynthesis of lipids including triglycerides and free fatty acids. Sublethal effects of thiocyclam hydrogen oxalate and spiromsifen were studied by considering the biological properties and life table parameters of T. vaporariorum. Our results may improve T. vaporariorum control efficiency in greenhouses meanwhile using reduced concentrations of these insecticides, which may be resulted in hindered host resistance to aforementioned insecticides and reduced their residuals on greenhouse crops.
Materials and Methods
The colony of whitefly was collected on ornamental crops (vervain and hollyhocks) at the greenhouse in Department of Horticulture at Urmia University during September 2023. The gathered whitefly population was reared on bean (var. MINA) in plastic pots (15 × 19 cm) under controlled greenhouse conditions (27 ± 2°C, 65% ± 5% RH, and a photoperiod of 16: 8 L: D h).
The dipping method was used for bioassay and life table studies against third instar nymphs of T. vaporariorum. The LC50 value of thiocyclam hydrogen oxalate and spiromsifen insecticides for third instar nymphs of the whitefly were obyained 392.627 and 854.871 ppm, respectively after 24 hours. The obtained LC25 concentrations (117.520 and 731.548 ppm), were used to estimate the sub-lethal effects of thiocyclam hydrogen oxalate and spiromsifen on the biological parameters of third instar nymphs of the greenhouse whitefly. To study the sublethal effects of both used insecticides, 50 same-aged of the third instar nymphs of the greenhouse whitefly were selected from the insect colony and then dipped in above mentioned sublethal concentrations of insecticides. The treated nymphs were transferred into petri dishes until the adults were appear. After adult emergence their eggs were used to life table studies. The age stage, two-sex life table method was used to analyze the collected data. We used the bootstrap technique with 100,000 iterations to estimate the variance and standard errors of the biological and population parameters and Sigma Plot software used to draw graphs. The growth of the pest population in a period of 60 days was done with Timing-MsChart software.
Results and Discussion
The present study demonstrated that thiocyclam hydrogen oxalate insecticide showed more acute toxicity on third instar nymphs of the greenhouse whitefly. Moreover, exposure of third instar nymphs to sublethal concentrations (LC25) negatively affected the development, survival, and reproductive characteristics and demographic factors. According to our findings, sublethal concentration of examined insecticides showed a significant increase in pre-adult duration of the pest on thiocyclam hydrogen oxalate treatment compared to spiromesifen and control treatments. The female adult’s lifespan/longevity was affected due to the usage of sublethal concentration of mentioned insecticides. The lowest duration of pre-­reproductive period (APOP) in control treatment was recorded as 1.33 days, while this parameter increased in treatments exposed to insecticides. Fecundity was reduced significantly in sub­lethal concentration of the insecticides compared to the control. The highest value of fecundity in control treatment was recorded 11.85 eggs per female and the lowest value in thiocyclam hydrogen oxalate was obtained 1.7 eggs per female. The mean oviposition period of greenhouse whitefly decreased from 4.44 days in control to 1.4 and 1.38 days in LC25 concentration of thiocyclam hydrogen oxalate and spiromsifen, respectively. All biological table parameters (R0, r and λ) of T. vaporariorum treated with sublethal concentration of the used insecticides were significantly affected compared to the control. The sublethal concentration of thiocyclam hydrogen oxalate and spiromsifen reduced the net reproductive rate (R0) from 4.21 eggs per female in each generation in the control treatment to 0.29 and 0.54 egg in LC25 concentration of thiocyclam hydrogen oxalate and spiromsifen, respectively. The intrinsic rate of increase (r) in sublethal concentration mention insecticides were recorded 0.0176 and -0.0271(day-1) and in control (0.0525 day-1). Other parameters, such as finite rate of increase (λ) and gross reproductive rate (GRR), in spiromesifen and thiocyclam hydrogen oxalate treatments were also significantly lower than the control treatment. The mean generation time (T) of the greenhouse whitefly affected by the LC25 concentration of spiromesifen compared to the control treatment.
Conclusions
The overall results demonstrated that both of the used insecticides could be considered as effective insecticides in management of T. vaporariorum.

کلیدواژه‌ها [English]

  • Biological properties
  • Greenhouse whitefly
  • Insecticides
  • Population growth

©2024 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

  1. Abdollahzadeh-Bovani, M., Mehrkhou, F., & Forouzan, M. (2024). Sublethal effects of thiocyclam hydrogen oxalate and spiromesifen on life table and population growth parameters of Encarsia formosa (Hymenoptera: Aphelinidae). Biological Control of Pests and Plant Diseases, 12(1), 111-131. https://doi.org/10.22059/jbioc.2024.376343.343

    1. Alegbejo, M.D., & Banwo, O.O. )2005(. Hosts of Bemisia tabaci Genn. in Northern Nigeria. Acta Phytopathologica et Entomologica Hungarica, 40(3-4), 417-422. https://doi.org/10.1556/aphyt.40.2005.3-4.24
    2. Alibakhshi, Z., Seddigh, S., & Tafaghodinia, B. )2020(. Chemical control optimization of Trialeurodes vaporariorum in gerbera commercial greenhouses. Journal of Crop Protection, 9(3), 421-437.
    3. Amini Jam, N., & Saber, M. (2018). Sublethal effects of imidacloprid and pymetrozine on the functional response of the aphid parasitoid, Lysiphlebus fabarum. Entomologia Generalis, 38(2), 173–190. https://doi.org/10.1127/entomologia/2018/0734
    4. Asadi, M., Rafiee–Dastjerdi, H., Nouri–Ganbalani, G., Naseri, B., & Hassanpour, M. (2019). Lethal and sublethal effects of five insecticides on the demography of a parasitoid wasp. International Journal of Pest Management, 65(4), 301–312. https://doi.org/10.1080/09670874.2018.1502899
    5. Avery, P.B., Simmonds, M.S., & Nicklin, J. (2015). Comparative growth and efficacy of Trinidadian strains of Isaria fumosorosea blastospores for controlling Trialeurodes vaporariorum on bean plants. Journal of Biopesticides, 8(1), 01-12. https://doi.org/10.57182/jbiopestic.8.1.1-12
    6. Basit, M., Saeed, S., Ahmad, M.,& Sayyed, A.H.(2013). Can resistance in Bemisia tabaci (Homoptera: Aleyrodidae) be overcome with mixtures of neonicotinoids and insect regulators? Crop Protection, 44, 135–141.https://doi.org/10.1016/j.cropro.2012.10.021
    7. Beheshti, A., Imani, S., Zahdi, H., Tirgari, S., & Abdi Gudarzi, M. (2022). Investigation of the sublethal effects of the insecticides Apel, Abacmetin and Amidachloropride on the life span of different life stages of greenhouse whiteflies (Trialeurodes vaporariorum) (Hem.: Aleyrodidae) in laboratory conditions. Quarterly Entomological Research Specialty (scientific-research), 14(1), 27-31. (in Persian).
    8. Bi, J.L., Toscano, N.C., & Ballmer, G.R. (2002). Greenhouse and field evaluation of six novel insecticides against the greenhouse whitefly Trialeurodes vaporariorum on strawberries. Crop Protection, 21, 49-55. https://doi.org/10.1016/S0261-2194(01)00063-1
    9. Bi, J.L., & Toscano, N.C. (2007). Current status of the greenhouse whitefly, Trialeurodes vaporariorum, susceptibility to neonicotinoid and conventional insecticides on strawberries in southern California. Pest Management Science, 63(8), 747-752. https://doi.org/10.1002/ps.1405
    10. Chen, X., Ma, K., Li, F., Lianq, P., Liu, Y., Guo, T., Song, D., Desneux, N., & Gao, X. (2016). Sublethal and transgenerational effects of sulfoxafor on the biological traits of thecotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae). Ecotoxicology, 25, 1841–1848. https://doi.org/10.1007/s10646-016-1732-9
    11. Chi, H. (1988). Life-table analysis incorporating both sexes and variable development rates among individuals. Environmental Entomology, 17, 26–34. https://doi.org/10.1093/ee/17.1.26
    12. Chi, H. (2020). TWOSEX-MSChart: A computer program for age stage, two-sex life table analysis. National Chung Hsing University, Taichung, Taiwan; available from http://140.120.197.173/ Ecology/Download/TWOSEX-MSChart.rar
    13. Chi, H. (2021). TIMING-MSChart: A computer program for the population projection based on age-stage, two-sex life table. National Chung Hsing University, Taichung, Taiwan. [online], Available: http: //140.120.197.173/Ecology
    14. 15. Chi, H., & Liu, H. (1985). Two new methods for the study of insect population ecology. Bulletin of the Institute of Zoology, Academia Sinica, 24, 225–240.
    15. Colvin, J., Omongo, C.A., Govindappa, M.R., Stevenson, P.C., Maruthi, M.N., Gibson, G., & Muniyappa, V. (2006). Host‐plant viral infection effects on arthropod‐vector population growth, development and behaviour: Management and epidemiological implications. Advances in Virus Research, 67, 419-452. https://doi.org/10.1016/S0065-3527(06)67011-5
    16. Cuthbertson, A.G.S., Buxton, J.H., Blackburn, L.F., Mathers, J.J., Robinson, K.A., Powell, M.E., Fleming, D.A., & Bell, H.A. (2012). Eradicating Bemisia tabaci Q biotype on poinsettia plants in the UK. Crop Protection, 42, 42–48. https://doi.org/10.1016/j.cropro.2012.08.009
    17. Dai, C., Ricupero, M., Wang, Z., Desneux, N., Biondi, A., & Lu, Y. (2021). Transgenerational effects of A neonicotinoid and a novel sulfoximine insecticide on the harlequin ladybird. Insects, 12, 681. https://doi.org/10.3390/insects12080681
    18. Desneux, N., Decourtye, A., & Delpuech, J.M. (2007). The sublethal effects of pesticides on beneficial arthropods. Annual Review of Entomology, 52, 81–106. https://doi.org/10.1146/annurev.ento.52.110405.091440
    19. Desneux, N., Fauvergue, X., Dechaume-Moncharmont, F.X., Kerhoas, L., Ballanger, Y., & Kaiser, L. (2005). Diaeretiella rapae limits Myzus persicae populations after applications of deltamethrin in oilseed rape. Journal of Economic Entomology, 98(1), 9–17. https://doi.org/10.1093/ jee/98.1.9
    20. Duhan, J.S., Kumar, R., Kumar, N., Kaur, P., Nehra, K., & Duhan, S. (2017). Nanotechnology: The new perspective in precision agriculture. Biotechnology Reports, 15, 11–23. https://doi.org/10.1016/j.btre.2017.03.002
    21. Ebneabbasi, S., Mehrkhou, F., & Fourouzan, M. (2023). Lethal and sublethal effects of thiocyclam hydrogen oxalateand flubendimide on the population growth parameters and population projection of Tuta absoluta (Lepidoptera: Gelechiidae). Journal of Entomological Society of Iran, 43(3), 219-231. https://doi.org/10.61186/JESI.44.2.71
    22. Erdogan, C., SibelVelioglu, A., Gurkan, M.O., Denholm, I., & Moores, G.D. (2021). Detection of resistance to pyrothroid and neonicotinoid insecticide in the greenhouse whitefly, Trialeurodes vaporariorum (Hemiptera: Aleyrodidae). Crop Protection, 146, 105661. https://doi.org/10.1016/j.cropro.2021.105661
    23. Finney, D. J. (1971). Probit Analysis. Third ed. Cambridge University Press, London
    24. Forouzan, M., & Sheikhi Garjan, A. (2023). Effect of sub lethal concentrations of thiocyclam insecticide on biological parameters of Liriomyza sativae (Diptera: Agromyzidae) under laboratory conditions. Journal of Entomological Society of Iran, 42(4), 279-290. https://doi.org/10.52547/jesi.42.4.3
    25. Gerling, D. (1990). Whiteflies: Their bionomics, pest status and management. Winborne, Uk, Intercept. 348 pp.
    26. Guedes, R.N.C., Smagghe, G., Stark, J.D., & Desneux, N. (2016). Pesticide-induced stress in arthropod­ pests for optimized integrated pest management programs. Annual Review of Entomology, 61, 43-62. https://doi.org/10.1146/annurev-ento-010715-023646
    27. Haddi, K., Mendes, M.V., Barcellos, M.S., Lino-Neto, J., Freitas, H.L., Guedes, R.N.C., & Oliveira, E.E. (2016). Sexual success after stress Imidacloprid-induced hormesis in males of the neotropical stink bug Euschistus heros. PLoS One, 11(6), 1–18. https://doi.org/10.1371/journal.pone.0156616
    28. Heidari, A., Moharramipour, S., Poormirza, A.A., & Talebi, A.A. (2005). Effects of pyriproxifen, buprofezin and fenpropathrin on the growth population parameters in Trialeurodes vaporariorum Westwood (Hom.: Aleyrodidae). Iranian Journal of Agricultural Science, 36(2), 353-361.
    29. Hosseininia, A., Khanjani, M., Khoobdel, M., & Javadi, S. (2017). Comparision of the efficiency of the current oils and insecticide compounds in control of greenhouse whitefly, Trialeurodes Vaporariorum (Westwood), (Hem.: Aleyrodidae) on rose and their interaction. Journal of Plant Protection, 30(4), 718-726. https://doi.org/10.22067/jpp.v30i4.53965
    30. Hudson, L. A., & Ciborowski, J. J. (1996). Teratogenic and genotoxic responses of larval Chironomus salinarius group (Diptera: Chironomidae) to contaminated sediment. Environmental Toxicology and Chemistry: An International Journal, 15(8), 1375-1381. https://doi.org/10.1002/etc.5620150817
    31. Kapantaidaki, D.E., Sadikoglou, E., Tsakireli, D., Kampanis, V., Stavrakaki, M., Schorn, C., Ilias, A., Riga, M., Tsiamis, G., Nauen, R., Skavids, G., Vontas, J., & Tsagkarakou, A. (2018). Insecticide resistance in Trialeurodes vaporariorum population and novel diagnostics for kdr mutation. Pest Management Science, 74(1), 59-69. https://doi.org/10.1002/ps.4674
    32. Karatolos, N., Denholm, I., Williamson, M., Nauen, R., & Gorman, K. (2010). Incidence and characterisation of resistance to neonicotinoid insecticides and pymetrozine in the greenhouse whitefly, Trialeurodes vaporariorum Westwood (Hemiptera: Aleyrodidae). Pest Management Science, 66, 1304-1307. https://doi.org/10.1002/ps.2014
    33. Kumar, A., & Singh, R. (2014). Bioefficacy of some insecticides against the greenhouse whitefly, Trialeurodes vaporariorum, Westwood (Homoptera: Aleyrodidae) on tomoto. The Bioscan, 9(3), 1073-1076.
    34. Kumari, S., Chauhan, U., Kumari, A., & Nadda, G. (2017). Comparative toxicities of novel and conventional acaricides against different stages of Tetranychus urticae Koch (Acarina: Tetranychidae). Journalof the Saudi Society of Agricultural Sciences, 16, 191-196. https://doi.org/10.1016/j.jssas.2015.06.003
    35. Lahiri, S., Smith, H.A., Gireesh, M., Kaur, G., & Montemayor, J.D. (2022). Arthropod pest management in strawberry. Insects, 13(5), 475. https://doi.org/10.3390/insects13050475
    36. Lu, Y.H., Zheng, X.S., & Gao, X.W. (2016). Sublethal effects of imidacloprid on the fecundity, longevity, and enzyme activity of Sitobion avenae (Fabricius) and Rhopalosiphum padi (Linnaeus). Bulletin of Entomological Research, 106, 551–559. https://doi.org/10.1017/S0007485316000286
    37. Mahmoodi, L., Mehrkhou, F., Guz, N., Forouzan, M., & Atlihan, R. (2020). Sublethal effects of three insecticides on fitness parameters and population projection of Brevicoryne brassicae (Hemiptera: Aphididae). Journal of Economic Entomology, 113(6), 2713-2722. https://doi.org/10.1093/jee/toaa193
    38. Menke, S., & Gerhard, D. (2010). Detection of a related difference in efficacy of Azadirachtin treatments for the control of whiteflies on Gerbera jamesonii by testing for interactions in generalized linear models. Pest Management Science, 66(4), 358-364. https://doi.org/10.1002/ps.1881
    39. Mota-Sanchez, D., & Wise, J.C. (2023). Arthropod pesticide resistance database. Retrieved from https://www. pesticideresistance.org/
    40. ­Nasruddin, A., Jumardi, J., & Melina, M. (2021). Population dynamics of Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae) and its populations on different planting dates and host plant species. Annals of Agricultural Sciences, 66, 109-114. https://doi.org/10.1016/j.aoas.2021.08.001
    41. Nikakhtar, S., Aramideh, S., Mirfakhraei, S., & Forouzan, M. (2022). The effect of sublethal concentration of three commercial formulations of neem including Kofa, NeemAzal and Nimbecidine on the life table parameters of the greenhouse whitefly, Trialeurodes vaporariorum (Hem., Aleyrodidae). Journal of Entomological Society of Iran, 42(4), 313-323. https://doi.org/10.52547/jesi.42.4.6
    42. Nourbakhsh, S. (2019). List of pests, diseases and weeds of the most important major agricultural products, pesticides and recommended methods for their control. The Ministry of Agriculture Jihad, 222 p. (in Persian).
    43. Omer, A.D., & Leigh, T.F. (1995). Sublethal effects of acephate and biphenate on fecundity, longevity and egg viability in greenhouse whitefly (Hom., Aleyrodidae). Journal of Applied Entomology, 119, 119-125.
    44. Patra, B., & Kumar Hath, T. (2022). Insecticide resistance in whiteflies Bemisia tabaci (Gennadius): Current global status. In Insecticides – Impact and Benefits of Its Use for Humanity. IntechOpen. https://doi.org/10.5772/intechopen.101954
    45. Pavela, R. (2009). Larvicidal effects of some Euro-Asiatic plants against Culex quinquefasciatus Say larvae (Diptera: Culicidae). Parasitology Research, 105, 887-892. https://doi.org/10.1007/s00436-009-1511-0
    46. Piri Ouchtape, M., Mehrkhou, F., & Foorouzan, M. (2024). Lethal and sub-lethal effects of Clothianidin and summer oil on the life table parameters and population trend of the cabbage aphid, Brevicoryne brassicae (Hem.: Aphididae). Plant Pest Research, 13(4), 17-34. https://www.magiran.com/p2692727
    47. Prijović, M.R., Marčić, D., Drobnjaković, T.M., Međo, I.S., & Perić, P. (2013). Life history traits and population growth of greenhouse whitefly (Trialeurodes vaporariorum Westwood) on different tomato genotypes. Pesticides and Phytomedicine/Pesticidi i fitomedicina, 28(4), 239-245. https://doi.org/10.2298/PIF1304239P
    48. Prince, G., & Chandler, D. (2020). Susceptibility of Myzus persicae, Brevicoryne brassicae and Nasonovia ribisnigri to fungal biopesticides in laboratory and field experiments. Insects, 11(1), 55. https://doi.org/10.3390/insects11010055
    49. Rajaee, F., Ghane-Jahromi, M., Maroofpour, N., & Sedaratian-Jahromi, A. (2022). Sublethal effects of spiromesifen on life table traits of Tetranychus urticae (Acari: Tetranychidae) and Neoseiulus californicus­ (Acari: Phytoseiidae). Acarologia, 62(3), 772-785. https://doi.org/10.24349/uja8-5ks2
    50. Rakhshani, M. (2005). Principle of Agricultural Toxicology (Pesticides). Farhang Jame Press Center of Tehran, Iran, p. 100-374. (In Persian).
    51. Reshadat-Salvanagh, N., Mehrkhou, F., &Fourouzan, M. (2024). Lethal and sublethal effects of Flonicamid and BIo2 on life span and population growth parameters of greenhouse whitefly, Trialeurodes vaporariorum, (Hemiptera: Aleyrodidae). Phytoparasitica, 52, 90. https://doi.org/10.1007/s12600-024-01209-8.
    52. Rezaei, Z., Ghane-Jahromi, M., Sedaratian, H., & Sahraeian, H. (2016). Investigation sub-lethal effects of thiocyclam hydrogen-oxalate on reproductive and population growth parameters of Tuta absoluta (Lep.:Gelechidae). Proceedings of 22nd Iranian Plant Protection Congress College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran. (Available: https://sid.ir/paper/937985/en)
    53. Safavi, S.A., & Bakhshaei, M. (2017). Biological parameters of Trialeurodes vaporariorum (Hemiptera: Aleyrodidae) exposed to lethal and sublethal concentrations of Calypso ®. Journal of Crop Protection, 6(3), 341 -351. http://dorl.net/dor/20.1001.1.22519041.2017.6.3.9.9
    54. Saidi, Z., & Ziaei, M. (2017). The toxicity of Sivanto ® and Ebron Speed ® insecticides to control sugarcane whitefly, Nemaskellia andropogonis, (Hem.: Aleyrodidae) in laboratory conditions. Plant Pest Research, 8(2), 53-65. (in Persian(. https://doi.org/10.22124/iprj.2018.2995
    55. Salvanagh, N.R., Mehrkhou, F., & Fourozan, M. (2024). Lethal and sublethal effects of Flonicamid and BIo2 on life span and population growth parameters of greenhouse whitefly, Trialeurodes vaporariorum, (Hemiptera: Aleyrodidae). Phytoparasitica, 52(5), 90.‏
    56. Sarbaz, S., Goldasteh, S., Zamani, A.A., Solymannejadiyan, E., & Vafaei Shoushtari, R. (2017). Side effects of spiromesifen and spirodiclofen on life table parameters of the predatory mite, Neoseiulus californicusMcGregor (Acari: Phytoseiidae). International Journal of Cardiology, 43, 380-386. https://doi.org/10.1080/01647954.2017.1325396
    57. Schmuttere, H. (2002). The Neem tree: Source of Unique Natural Products for Integrated Pest Management, Medicine, Industry and Other Purposes (Hardcover), 2nd Edition, Weunheim, Germany: VCH Verlagsgesellschaft, p. 120-138.
    58. Sedaratian, A., Fathipour, Y., Talaei-Hassanloui, R., & Jurat-Fuentes, J.L. (2013). Fitness costs of sublethal exposure to Bacillus thuringiensis in Helicoverpa armigera: A carryover study on offspring. Journal of Applid Entomology, 137, 540-549. https://doi.org/10.1111/jen.12030
    59. Shahbazvar, N., Sahragard, A., Hosseini, R., & Hajizadeh, J. (2011). A preliminarily study on adult characters of whiteflies (Hem.: Aleyrodidae). Entomofauna, Zeitshrift Fur Entomologie, 32(30), 413-420.

    61.­Shahmohammadi Heidari, B., Allahyari, H., & Talebi-Jahromi, Kh. (2022). Effect of mayonnaise and emulsifiable concentrate formulations on population dynamic of greenhouse whitefly (Trialeurodes vaporariorum). Iranian Journal of Plant Protection Science, 53(1), 131-141. (in persian). https://doi.org/10.22059/IJPPS.2022.339946.1007001

    1. Sharifiyan, M., Mehrkhou, F., & Negahban, M. (2024). Lethal and sublethal effects of Mentha piperita L. and its nanoeformulation form on the biological and population growth parameters of Trialeurodes vaporariorum (Westwood) under laboratory conditions. Journal of Entomological Society of Iran, 44(1), 25–41. https://doi.org.10.61186/jesi.44.1.3
    2. Sheikhigarjan, A., Najafi, H., Abbasi Azimi, H., & Moradi, M. (2021). The chemical and organic pesticide guide of Iran. Rah Dan Press, Tehran, Iran, p. 525.
    3. Simmonds, M.S.J., Manlove, J.D., Blaney, W.M., & Khambay, B.P.S. (2002). Effects of selected botanical insecticides on the behaviour and mortality of the glasshouse whitefly Trialeurodes vaporariorum and the parasitoid Encarsia formosa. Entomologia Experimentalis et Applicata, 102, 39-47. https://doi.org/10.1046/j.1570-7458.2002.00923.x
    4. SPSS, Inc. (2019). IBM SPSS statistics for windows, version 26.0 (Vol. 440). IBM Corporation.
    5. Stark, J.D., & Rangus, T.M. (1994). Lethal and sublethal effects of the neem insecticide formulation, ‘Margosan-O’, on the pea aphid. Pest Management Science, 41, 155–160. https://doi.org/10.1002/ps.2780410212 
    6. Subba, B., Pal, S., Mandal, T., & Ghosh, S.K. (2017). Population dynamics of whitefly (Bemisia tabaci Genn.) infesting tomato (Lycopersicon esculentus L.) and their sustainable management using biopesticides. Journal of Entomology and Zoology Studies, 5(3), 879-883.
    7. Talebi Jahromi, Kh. (2012). Pesticide toxicology. University of Tehran Press, Iran. 508 pp.
    8. Tan, Y., Biondi, A., Desneux, N., & Gao, X.W. (2012). Assessment of physiological sublethal effectsof imidacloprid on themirid bug Apolygus lucorum (Meyer-Dür). Ecotoxicology, 21, 1989–1997. https://doi.org/10.1007/s10646-012-0933-0
    9. Wang, R., Zhang, W., Che, W.N., Qu, C., Li, F.Q., Desneux, N., & Luo, C. (2017). Lethal and sublethal ­effects of cyantraniliprole, a new anthranilic diamide insecticide, on Bemisia tabaci (Hemiptera: ­Aleyrodidae). MEDcrop Protection, 91, 108–113.
    10. Wang, R., Zheng, H.X., Qu, C., Wang, Z.H., Kong, Z.Q., & Luo, C. (2016). Lethal and sublethal effectsof a novel cis-nitromethylene neonicotinoid insecticide, cycloxaprid, on Bemisia tabaci. Journal of Crop Protection, 83, 15–19. http://dx.doi.org/10.1016/j.cropro.2016.01.015
    11. Wintermantel, W.M., Hladky, L.L., Cortez, A.A., & Natwick, E.T. (2009). A new expanded host range­ of cucurbit yellow stunting disorder virus includes three agricultural crops. Plant Disease, 93(7), 685-690. https://doi.org/10.1094/PDIS-93-7-0685
    12. Xu, L., Zhao, C.Q., Zhang, Y.N., Liu, Y., & Gu, Z.Y. (2016). Lethal and sublethal effects of sulfoxaflor on the small brown planthopper Laodelphax striatellus. Journal of Asia-Pacific Entomology, 19, 683–689. https://doi.org/10.1016/j.aspen.2016.06.013
    13. Zapata, N., Vargas, M., Latorre, E., Roudergue, X., & Ceballos, R. (2016). The essential oil of Laurelia sempervirens is toxic to Trialeurodes vaporariorum and Encarsia formosa. Industrial Crops and Industrial Crops and Products, 84, 418-422. https://doi.org/10.1016/j.indcrop.2016.02.030
    14. Zawrah, M.F.M., Masry, A.T.E., Noha, L., & Saleh, A.A.A. (2020). Efficiacy of certain insecticides against whitefly Bemisia tabaci (Genn.) infesting tomato plants and their associated predators. Plant Archives, 20(2), 2221-2228.

     

CAPTCHA Image