شناسایی و بررسی خصوصیات ‎مولکولی‎ دو جدایه از ویروس موزائیک‎ پیچ تلگرافی (Vinca mosaic virus) بر مبنای ژن‎های p1 و cp

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه گیاه‌پزشکی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

ویروس موزائیک‎ پیچ تلگرافی (Vinca mosaic virus, VMV) یک گونه جدید از پوتی‎ویروس‎هاست که به تازگی گزارش شده‎است، این ویروس روی گیاه پیچ تلگرافی نشانه‎های موزائیک‎ شدید تا خفیف، تاولی، پیسک، زردی، چین‎دار شدن و پیچیدگی برگ ایجاد می‎کند. به‌منظور تعیین خصوصیات مولکولی و تبارزایی دو جدایه از ویروس موزائیک‎ پیچ تلگرافی (VMV-IR-1, VMV-IR-2) بر مبنای ژن‎های cp و p1، ابتدا توالی ژن‎های p1 و cp جدایه‎های موردنظر که با روش تـوالی‎یـابی نسـل جدیـدNext generation sequencing, NGS) ) به‎دست آمده‎بودند با توالی سایر پوتی‎ویروس‎های موجود در بانک ژن مقایسه شدند، درصد تشابه میان ژن cp دو جدایه ایرانی VMV در سطح نوکلئوتیدی (nt) 93.11 درصد و در سطح آمینواسیدی (aa) 97.00 درصد بود. برای ژن p1 نتایج نشان‎دهنده درصد تشابه 68.35 در سطح نوکلئوتیدی و 66.78 درصد در سطح آمینواسیدی بود. بیشترین درصد تشابه ژن cp جدایه‎های ویروس VMV با سایر پوتی‎ویروس‎های موجود در بانک ژن در سطح نوکلئوتیدی با asparagus virus 1  (ASV1)به میزان 75.00 درصد با VMV-IR-1 و 73.82 درصد با VMV-IR-2 بود و در سطح آمینواسیدیVMV-IR-1  و VMV-IR-2 بیشترین درصد تشابه را با Vanilla distortion mosaic virus  (VDMV) به میزان 70.39 درصد نشان دادند. بیشترین درصد تشابه ژن p1 جدایه‎های VMVدر سطح نوکلئوتیدی با (CatMV) Catharanthus mosaic virus به میزان 52.29 درصد با VMV-IR-1 و 51.31 درصد با VMV-IR-2 بود و در سطح آمینواسیدی VMV-IR-1 و VMV-IR-2 بیشترین درصد تشابه را با (ZTMV) zucchini tigre mosaic virus به میزان 28.70 درصد نشان دادند. همچنین موتیف‎های حفاظت‎شده در توالی ژن‎های cp و p1 مشخص شدند. دندروگرام حاصل از مطالعات تبارزایی بر مبنای توالی‎های نوکلئوتیدی و آمینواسیدی ژن‎های مورد بررسی دو جدایه ایرانی VMV به همراه گونه‎های دیگر جنس پوتی‎ویروس موجود در بانک ژن، این ویروس‎ها را به‌ترتیب در دو و سه گروه مجزا از هم، طبقه‎بندی کرد. تعیین روابط تکاملی براساس ژن‎ cp در سطح آمینواسیدی نشان داد که نزدیک‎ترین ویروس به جدایه‎های VMV، ویروس Yam mosaic virus (YMV) بود. درخت تبارزایی رسم‎شده بر اساس ژن CP در سطح نوکلئوتیدی، جدایه‎های VMV را با ویروس‌های Sweet potato virus 2 (SPV2) ، (SCMV) Sugarcane mosaic virus، Onion yellow dwarf virus OYDV)) و Johnsongrass mosaic virus (JGMV) در یک گروه قرار داد. بر اساس توالی ژن p1 جدایه‎های VMV در سطح نوکلئوتیدی نزدیکترین ارتباط را با ویروس‎JGMV دارند و در سطح آمینواسیدی با ویروس‎های YMV و Celery mosaic virus ( (CeMV در یک گروه قرار می‎گیرند. تجزیه و تحلیل تبارزایی براساس ژن‎هایCP و P1، جدایه‎های VMV را در میان اعضای جنس پوتی‎ویروس گروه‎بندی کرد. بنابراین تجزیه و تحلیل بر مبنای این دو ژن قابلیت تفکیک اعضای جنس پوتی‎ویروس را دارد. همینطور خصوصیات ژنومی ژن‎های CP و P1 جدایه‎های VMV مشابه ویژگی‎های این دو ژن در سایر اعضای جنس پوتی‎ویروس است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Identification, Molecular and Phylogenetic Characterization of Two Isolates of vinca mosaic virus Based on p1 and cp Genes

نویسندگان [English]

  • Sorya Turang
  • Mohsen Mehrvar
  • Mohammad Zakiaghl
Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
چکیده [English]

Introduction
 Vinca minor or lesser periwinkle is a perennial, herbaceous and creeping plant belonging to the genus Vinca and the family Apocynaceae. In addition to being an ornamental and cover plant, V. minor is a valuable herbal plant in traditional medicine, and it also acts as a natural source for the industrial manufacture of brain blood flow stimulants. Periwinkle contains more than 150  alkaloids, which have been isolated from the aerial parts and roots of the plant, so far (Proksa et al.,1988), consisting of vincaminorine, vincaminoreine, minovine, minovincine, vincamine, which has antihypoxic and neuroprotective properties as well as modulatory effects on brain circulation and neuronal homeostasis (Farahanikia et al., 2011). Vinca mosaic virus (VMV), belonging to the genus Potyvirus and the family Potyviridae, causes severe to mild mosaic symptoms, yellowing, blistering and leaf curl in the leaves of the periwinkle plant. In this study, the molecular and phylogenetic characteristics of two isolates of VMV were investigated via analysis of p1 and cp genes.
Materials and Methods
 Virus-like symptoms, such as mosaic and mottling, yellowing, blistering and leaf curling were found on the leaves of V. minor plants in the pardis campus of Ferdowsi University of Mashhad, Razavi Khorasan, Iran, during a survey in September 2019. Total RNA was extracted from the leaves with the SV Total RNA Isolation Kit to determine the causal agent(s) (Promega, USA). Deep sequencing was carried out on the samples by Macrogen Company in South Korea. Analysis of the results with CLC Genomics Workbench v.12.0.3 software showed that these plants were infected with two isolates of VMV. The cp and p1 gene sequences of VMV isolates were determined. Clustal Omega software was used to compare multiple sequence alignments among sequences and determine the percentage of identities at the nucleotide and amino acid levels. To determine phylogenetic relationships and evolutionary origin of Iranian VMV isolates, phylogenetic tree was drawn based on nucleotide and amino acid sequences of cp and p1 genes using MEGA 7 software and Maximum-Likelihood (ML) method with 1000 replications (Bootstrap). The SDT software (v.1.2) and Muscle sequencing were used to plot the similarity matrix among the isolates at the nucleotide and amino acid levels.
Results and Discussion
 The identities between the cp gene of two Iranian VMV isolates (VMV-IR-1 and VMV-IR-2) at the nucleotide (nt) and amino acid (aa) levels were 93.11% and 97.00% respectively. For the p1 gene, the obtained results showed 68.35% identity at the nt level and 97.00% at the aa level. The highest percent of nt identity of the VMV cp with other potyviruses in the GenBank was with ASV1 (asparagus virus 1) (75.00% with VMV-IR-1 and 73.82% with VMV-IR-2) VMV-IR-1 and VMV-IR-2 showed the highest aa identity with VDMV (vanilla distortion mosaic virus) (70.39%). The highest nt and aa identity of p1 gene of VMV isolates was with CatMV (catharanthus mosaic virus) (52.29% VMV-IR-1 and 51.31% with VMV-IR-2) and ZTMV (zucchini tigre mosaic virus) (28.70%), respectively. Protected motifs were also identified in the cp and p1 gene sequences. Dendrograms obtained from phylogenetic analysis based on nt and aa acid sequences of these genes placed two Iranian VMV isolates, along with other species of potyviruses in the GenBank, viruses in two and three separate groups respectively. Based on cp gene sequences, at the aa level Iranian VMV isolates is most closely related to yam mosaic virus (YMV) virus, and at the nt level with the closest viruses are include sweet potato virus 2 (SPV2), sugarcane mosaic virus (SCMV), onion yellow dwarf virus (OYDV) and johnsongrass mosaic virus (JGMV) in the same group. Based on the p1 gene sequences, VMV isolates at the nt level were most closely related to the JGMV virus and at the aa level were most closely related to the YMV and celery mosaic virus (CeMV) viruses.
Conclusion
 In this study, for the first time, the molecular properties of VMV isolates were determined based on the cp and p1 genes, and the phylogenetic position of two Iranian VMV isolates was drown. The results showed that the cp gene can be used for taxonomic purposes. Considering the medicinal and ornamental properties of periwinkle and effect of the viruses on its properties, special attention should be paid to viral diseases of this plant.

کلیدواژه‌ها [English]

  • NGS
  • Phylogenetic analysis
  • Potyvirus
  • vinca mosaic virus

©2024 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0).

 

https://doi.org/10.22067/jpp.2024.82191.1144

  1. Adams, M. , Antoniew, J. E., & Fauquet, C. M. (2005). Molecular criteria for genus and species discrimination within the family Potyviridae. Archives of Virology, 150, 459-479. https://doi.org/10.1007/s00705-004-0440-6
  2. Al-Zahrani, H. M., Elbeshehy, E. K. F., Aldhebiani, A.Y., & Elbeaino, T. (2017). Effect of Cucumber mosaic virus (CMV) infection on antineoplastic alkaloids from periwinkle (Catharanthus roseus L.) cultured in the Mecca region and resistance induction by plant-growth-promoting rhizobacteria (PGPR). Biotechnology & Biotechnological Equipment, 32(1), 49-57. https://doi.org/10.1080/13102818.2019.1669490
  3. Al-Zahrany, H. , Elbeshehy, E. K. F., Aldhebiani, A.Y., Almaghrabi, O., Al-Jaddawi, A.A., & Alzahrani, A.H. (2019). Effect of Catharanthus mosaic virus (CatMV) on antineoplastic alkaloids from periwinkle (Catharanthus roseus L.) cultured in Mecca region and resistance induction by plant growth-promoting rhizobacteria. Biotechnology & Biotechnological Equipment, 33(1), 1392-1401. https://doi.org/10.1007/s40858-020-00346-9
  4. Atreya, C. , Raccah, B., & Pirone, T. P. (1990). A point mutation in the coat protein abolishes aphid transmissibility of a potyvirus. Virology, 178(1), 161-165. https://doi.org/10.1016/0042-6822(90)90389-9
  5. Azarfar, A., Izadpanah, K., Afsharifar, A., & Masumi, M. (2012). Purification and the complete genome sequence of Zucchini yellow mosaic virus- Fars isolate. Iranian Journal of Plant Pathology, 48(3), 403-409. (In Persian with English abstract)
  6. Baghalian, K., Kim, O. , & Natzuaki, K. T. (2010). Molecular variability and genetic structure of the population of Onion yellow dwarf virus infecting garlic in Iran. Virus Genes, 41(2), 282-291. https://doi.org/10.1007/s11262-010-0514-3
  7. Berger, P. (2001). Potyviridae. In: Encyclopedia of Life Sciences. https://doi.org/10.1038/npg.els.0000755
  8. Brunt, A. , Crabtree, K., Dallwitz, M. J., Gibbs, A. J., Watson, L., & Surcher, E. J. (1996). Plant Viruses Online: Descriptions and Lists from the VIDE Database.
  9. Chen, J., Adams, M. , Zheng, H.Y., & Chen, J.P. (2003). Sequence analysis demonstrates that Onion yellow dwarf virus isolates from China contain a P3 region much larger than other potyviruses. Archives of Virology, 148(6), 1165-1173. https://doi.org/10.1007/s00705-003-0020-1
  10. Chen, Z., Anane, R. , Wang, Z., Yang, L., Chen, L., Wen, G., & Zhao, M. (2020). Complete genome sequence of a novel potyvirus isolated from Polygonatum kingianum. Archives of Virology, 165(9), 2127-2131. https://doi.org/10.1007/s00705-020-04717-0.
  11. Ciorita, A., Zagrean-Tuza, C., Mot, A. , Carpa, R., & Parvu, M. (2021). The phytochemical analysis of Vinca L. species leaf extracts is correlated with the antioxidant, antibacterial, and antitumor effects. Molecules, 26(10), 3040. https://doi.org/10.3390/molecules26103040
  12. Danci, O., Ziegler, A., Torrance, L., Gasemi, S., & Danci, M. (2009). Potyviridae family- short review. Journal of Horticulture, Forestry and Biotechnology, 13, 410-420.
  13. Duarte, L. L., Salatino, M. L. F., Salatino, A., Negri, G., & Barradas, M. M. (2008). Effect of Potato virus X on total phenol and alkaloid contents in Datura stramonium leaves. Summa Phytopathologica, 34(1), 65-67. https://doi.org/10.1590/s0100-54052008000100013
  14. Dujovny, G., Sasaya, T., Koganesawa, H., Usugi, T., Shohara, K., & Lenardon, S.L. (2000). Molecular characterization of a new potyvirus infecting sunflower. Archives of Virology, 145(11), 2249-2258. https://doi.org/10.1007/s007050070018
  15. El-Dougdoug, K., Mohamed, H., & Abo-Senna, A. (2007). Effect of PVY viral infection on alkaloid contents of cultivated medicinal plants. Journal of Applied Sciences Research, 558-563. https://api.semanticscholar.org/CorpusID:128357263
  16. Farah Bakhsh, F., Maesomi, M., Afshari Far, A., & Izadpanah, K.L. (2013). Genetic variation of Bermuda grass southern mosaic virus isolates based on sequence of 3' region of genome. Iranian Journal of Plant Pathology, 49(1), 61-75. (In Persian with English abstract)
  17. Farahanikia, B., Akbarzadeh, T., Jahangirzadeh, A., Yassa, N., Shams Ardekani, M.R., Mirnezami, T., Hadjiakhoondi, A., & Khanavi, M. (2011). Phytochemical investigation of Vinca minor cultivated in Iran. Iranian Journal of Pharmaceutical Research, 10(4), 777-785. https://doi.org/10.22037/ijpr.2011.992
  18. Fisher, J.R. (2012). Identification of three distinct classes of Satellite RNAs associated with two Cucumber mosaic virus Serotypes from the ornamental groundcover Vinca minor. Plant Health Progress, 13(1). https://doi.org/10.1094/php-2012-0412-01-rs
  19. Fisher, J.R. (2013). First report of Arabis mosaic virus infecting Vinca minor in Ohio. Plant Health Progress, 14(1). https://doi.org/10.1094/php-2013-0901-02-br
  20. Ha, C., Coombs, S., Revill, P.A., Harding, R. , Vu, M., & Dale, J. L. (2008). Design and application of two novel degenerate primer pairs for the detection and complete genomic characterization of potyviruses. Archives of Virology, 153(1), 25-36. https://doi.org/10.1007/s00705-007-1053-7
  21. Lecoq, H. , Wipf-Scheibel, C., Chandeysson, A., Lê Van, F., & Fabre, C. (2008). Desbiez, Molecular epidemiology of Zucchini yellow mosaic virus in France: An historical overview, Virus Research, 141(2), 190-200. https://doi.org/10.1016/j.virusres.2008.11.020
  22. Hasiow-Jaroszewska, B., Fares, M., & Elena, S. (2014). Molecular evolution of viral multifunctional proteins: the case of Potyvirus HCPro. Journal of Molecular Evolution,78(1), 75–86. https://doi.org/10.1007/s00239-013-9601-0
  23. Masumi, M., Zare, A., & Izadpanah, K. (2011). Biological, serological and molecular comparisons of potyviruses infecting poaceous plants in Iran. Iranian Journal of Plant Pathology, 47(1), 47-66. (In Persian with English abstract)
  24. Moudi, M., Go, R., Yien, C. , & Nazre, M. (2013). Vinca alkaloids. International Journal of Preventive Medicine, 4(11), 1231-1235.
  25. Nigam, D., LaTourrette, K., Souza, P. N., & Garcia-Ruiz, H. (2019). Genome-wide variation in Potyviruses. Frontiers in Plant Science,10, 1439. https://doi.org/10.3389/fpls.2019.01439
  26. Ohshima, K., Tomitaka, Y., Wood, J., Minematsu, Y., Kajiyama, H., Tomimura, K., & Gibbs, A. (2007). Patterns of recombination in Turnip mosaic virus genomic sequences indicate hotspots of recombination. The Journal of General Virology, 88, 298-315. https://doi.org/10.1099/vir.0.82335-0
  27. Reichmann, E., Schwarz, H., Deiner, E. , Leitner, I., Eilers, M., Berger, J., Busslinger, M., & Beug, H. (1992). Activation of an inducible c-FosER fusion protein causes loss of epithelial polarity and triggers epithelial-fibroblastoid cell conversion. Cell, 71(7), 1103-1116. https://doi.org/10.1016/s0092-8674(05)80060-1
  28. Rohozkova, J., & Navratil, M. (2011). P1 peptidase - a mysterious protein of family Potyviridae. Journal of Biosciences, 36(1), 189–200. https://doi.org/10.1007/s12038-011-9020-6
  29. Saleem Haider, M. , Tahir, M., Saeed, A., Ahmed, S., Parveen, R., & Rashid, N. (2008). First report of a begomovirus infecting the ornamental plant Vinca minor L. Australasian Plant Disease Notes, 3(1), 150. https://doi.org/10.1071/dn08058
  30. Shukla, D. , & Ward, C.W. (1989). Structure of potyvirus coat proteins and its application in the taxonomy of the potyvirus group. Advances in Virus Research, 36, 273-314. https://doi.org/10.1016/s0065-3527(08)60588-6
  31. Thawabteh, A., Juma, S., Bader, M., Karaman, D., Scrano, L., Bufo, S. , & Karaman, R. (2019). The biological activity of natural alkaloids against herbivores, cancerous cells and pathogens. Toxins (Basel), 11(11), 656. https://doi.org/10.3390/toxins11110656
  1. Urcuqui-Inchima, S., Haenni, A. L., & Bernardi F. (2001). Potyvirus proteins: a wealth of functions. Virus Research, 74, 157–175. https://doi.org/10.1016/s0168-1702(01)00220-9
  1. Valli,, Lopez-Moya, J. J., & Garcia, J.A. (2007). Recombination and gene duplication in the evolutionary diversification of P1 proteins in the family Potyviridae. Journal of General Virology, 88(Pt 3), 1016-1028. https://doi.org/10.1099/vir.0.82402-0
  2. Valli, A., García, J. , & López‐Moya, J. J. (2015). Potyviridae. In eLS (pp. 1-10): Wiley.
  3. Verchot, J. , Herndon, K. L., & Carrington, J. C. (1992). Mutational analysis of the Tobacco Etch Potyviral 35-kDa proteinase:Identification of essential residues and requirements for autoproteolysis. Virology, 190, 298–306. https://doi.org/10.1016/0042-6822(92)91216-h
  4. Verma, R. , Mishra, R., & Petrov, N. M. (2015). Molecular characterization and recombination analysis of an Indian isolate of Onion yellow dwarf virus. European Journal of Plant Pathology, 143, 437–445. https://doi.org/10.1007/s10658-015-0695-7
  5. Walker, P. , Siddell, S. G., Lefkowitz, E. J., Mushegian, A. R., Adriaenssens, E. M., Alfenas-Zerbini, P., Davison, A. J., Dempsey, D. M., Dutilh, B. E., Garcia, M. L., Harrach, B., Harrison, R. L., Hendrickson, R. C., Junglen, S., Knowles, N. J., Krupovic, M., Kuhn, J. H., Lambert, A. J., Lobocka, M., Nibert, M. L., Oksanen, H.M., Orton, R. J., Robertson, D. L., Rubino, L., Sabanadzovic, S., Simmonds, P., Smith, D. B., Suzuki, N., Van Dooerslaer, K., Vandamme, A. M., Varsani, A., & Zerbini, F. M. (2021). Changes to virus taxonomy and to the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2021). Archives of Virology, 166(9), 2633-2648. https://doi.org/10.1007/s00705-021-05156-1
  6. Zhang, J., Chiodini, R., Badr, A., & Zhang, G. (2011). The impact of next-generation sequencing on genomics. Journal of Genetics and Genomics, 38(3), 95-109. https://doi.org/10.1016/j.jgg.2011.02.003
CAPTCHA Image