معرفی روش مؤثر کاهش آلودگی قارچی در پرورش کنه شکارگر Amblyseius swirskii (Athias-Henriot)(Acari:Phytoseiidae)

نوع مقاله : مقالات پژوهشی

نویسندگان

1 گروه فن آوری و مدیریت تولید، پژوهشکده گل و گیاهان زینتی، موسسه تحقیقات علوم باغبانی، سازمان تحقیقات آموزش و ترویج کشاورزی، محلات، ایران

2 گروه فن آوری و مدیریت تولید، پژوهشکده گل و گیاهان زینتی، موسسه تحقیقات علوم باغبانی، سازمان تحقیقات، اموزش و ترویج کشاورزی، ایران، محلات

چکیده

کنه شکارگر Amblyseius swirskii (Athias-Henriot) یکی از رایج‌ترین عوامل کنترل بیولوژیک برای کنه تارتن دونقطه‌ای، سفید‌ بالک گلخانه و تریپس ‌پیاز در گلخانه‌ها می‌باشد که به طور گسترده‌ای در محصولات گلخانه‌ای جهان بکار می‌رود. اهمیت این مطالعه تسهیل در پرورش انبوه شکارگر فوق بوده است. برای پرورش انبوه این شکارگر از بستر پرورشی همراه با تخم‌ها، مراحل پورگی و کنه‌های بالغCarpoglyphus lactis Linnaeus (کنه میوه خشک) در شرایط دمایی C °1± 25  ، رطوبت نسبی RH %  5 ± 75 و دوره نوری L:D ,h 8 : 16 استفاده شد. یکی از مهم‌ترین موانع پرورش کنه شکارگر، آلودگی محیط پرورشی به قارچ‌هایی نظیر Rhizopus، Aspergillus و Penicillium می‌باشد که باعث تجزیه محیط پرورشی و به تبع آن مرگ کنه میوه خشک و کنه شکارگر در محیط پرورش می‌شود. به منظور بررسی کارآیی پنج ترکیب در کنترل قارچ‌ها، آزمایشی با دوازده تیمار در قالب طرح کاملاً تصادفی در سه تکرار انجام شد. از بستر پرورشی (800 گرم آرد سنجد، 195 گرم سبوس گندم، 5 گرم گرده نخل) به علاوه یک گرم از ترکیبات: تبوکونازول، جوش شیرین (بی کربنات سدیم)، کالیبان (بی کربنات پتاسیم)، کیتوزان و کاربندازیم و در تیمارهایی مخلوط دو ترکیب، از هر جزء نیم گرم استفاده شد. بین کاهش شدت آلودگی به قارچ و افزایش جمعیت کنه طعمه و کنه شکارگر همبستگی مثبت مشاهده شد. از بین ترکیبات مختلف، کاربرد قارچ‌کش تبوکونازول به میزان یک گرم در هزار گرم بستر، بهترین اثر را در کنترل قارچ‌ها داشت. هرچند ترکیباتی مانند بی کربنات سدیم  و بی کربنات پتاسیم تأثیر کمتری داشتند ولی  به علت غیر سمی بودن گزینه های مناسبی می باشند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Introducing an Effective Method to Reduce Fungal Infection in Mass Rearing Predatory Mites Amblyseius swirskii (Athias-Henriot) (Acari: Phytoseiidae)

نویسندگان [English]

  • Asghar Hoseini nia 1
  • Hossein Bayat 2
1 Department of Technology and Production Management, Ornamental Plants Research Center (OPRC), Horticultural Sciences Research Institute (HSRI), Agricultural Research, Education and Extension Organization (AREEO), Mahallat, Iran,
2 Technology and Production Management of Ornamental Plants Research Center (OPRC), Horticultural Sciences Research Institute (HSRI), Agricultural Research, Education and Extension Organization (AREEO), Mahallat, Iran
چکیده [English]

Introduction
Due to the process of quality control of agricultural products and accurate assessment of pesticide residues in products exported to destination countries, the application of biological control has become essential. In order to use biological control, biological agents must either be purchased from countries with the technology of mass production of natural enemies, or to meet the needs of the country, the technology of mass production of predators and parasitoids must be developed. In the case of mass rearing of predatory mites, which are mostly used to control spider mite, the problem of mass prodaction has been partially resolved and some companies are rearing, but in mass rearing of these predators, destructive effects on non-target natural enemies and mold growth on the rearing media of predatory mites are problematic. The predatory mite, Amblyseius swirskii (Athias-Henriot) is one of the most common biological agents for control of two-spotted mite, whitefly and onion thrips in greenhouses, which is widely used in greenhouse crops worldwide. The importance of this study is to facilitate the mass production of this predatory mite. In mass production of this predator, a medium with eggs, nymphal stages, and mature mites of Carpoglyphus lactis Linnaeus was used at 25 ± 1 ° C, 70 ± 5% RH and L: D 16: 8. One of the most important limitation in the production of this predator is infection with some fungi such as Rhizopus spp., Aspergillus spp,and Penicillium spp., which caused the deterioration of the medium and consequently the death of dried fruit mites and predatory mites in the production environment.
Materials and Methods
To investigate the efficacy of five componds on fungal control, an experiment was achieved with twelve treatments in a completely  randomized design in three replication. From the culture medium (800 g of elm flour, 195 g of wheat bran and 5 g of palm pollen) plus 1g/kg of compounds: tebuconazole, baking soda (sodium bicarbonate), Caliban® (potassium bicarbonate), Chitosan®, and carbendazim and in treatments where two compounds were mixed, 0.5 g/kg was used.
Results and Discussion
The analysis of variance for the treatments revealed significant differences in fungal infection reduction and the population dynamics of the mites. The treatments that showed the highest reduction in fungal infection compared to the control were treatments 1 (tebuconazole®), 3 (Caliban®), and 6 (Trichocara®), with reductions of 66.33%, 63.25%, and 28.62%, respectively.
In terms of the population increase of the prey mite C. lactis, the treatments that exhibited the highest increases were treatments 1 (tebuconazole®), 10 (Chitosan = tebuconazole), and 6 (Trichocara®), with population increases of 80.22%, 65.75%, and 65.15%, respectively.
Regarding the population increase of the predatory mite A. swirskii, the treatments that showed the highest increases were treatments 1 (tebuconazole®) and 6 (Trichocara®), with population increases of 76.33% and 72.66%, respectively, in the first group. In the second group, treatments 3 (Caliban®), 2 (soda), and 10 (Chitosan + tebuconazole) exhibited population increases of 56.33%, 54.66%, and 53.66%, respectively.
These results demonstrate the effectiveness of treatments 1 (tebuconazole®) and 6 (Trichocara®) in reducing fungal infection and promoting the population growth of both prey and predatory mites. Treatments 3 (Caliban®), 10 (Chitosan = tebuconazole), and 2 (soda) also showed positive effects on the population dynamics of the mites.
Conclusion
The predator mite population of A. swirskii is able to complete its growth on growth substrates with prey mite C. lactis. This predator has a high potential in feeding on dry fruit mite C. lactis. Therefore, this bait can be a suitable food for the mass production of A. swirskii mites. The most important problem in rearing large numbers of predatory mites is saprophytic fungi, which cause the destruction of a large number of predatory mites and their prey due to their sudden expansion. In general, according to the results of our study, the use of tebuconazole fungicide at a rate of one per thousand of commercial material and also the biological compound of Trichocara® (Trichoderma virens) with a concentration of one per thousand are recommended to control saprophytic fungi in mass production environment of predatory mite,A. swirskii,. Each of these two compounds has its advantages and disadvantages. In terms of availability, tabuconazole is more readily accessible compared to Trichocara®, which is a biological compound and considered more environmentally safe. However, Trichocara® may darken the color of the culture medium slightly due to the growth of Trichoderma virens in the medium. Considering the economic aspect and cost reduction in mass production of predatory mites, baking soda and Caliban®, which were part of the second group of effective treatments, offer economic value and are much cheaper than other compounds. They can effectively reduce the severity of fungal infections at minimal cost. Among the different compounds tested, the use of tebuconazole fungicide at a rate of one gram per thousand grams of substrate showed the most significant effect in controlling fungi. Although sodium bicarbonate and potassium bicarbonate were found to be less effective, they are still viable options due to their non-toxic nature.
 

کلیدواژه‌ها [English]

  • Amblyseius swirskii
  • Carpoglyphus lactis
  • Fungicide
  • Mass rearing
  1. (2017). List of permitted poisons in the country. Plant Protection Organization Agricultural Information and Scientific Documentation Center, p., 441. (In Persian)
  2. Azimi, H. (2014). The effect of combination of Cruxime methyl and tetraconazole fungicides with potassium bicarbonate in the control of powdery mildew in greenhouse conditions, Conference on Agricultural and Environmental Sciences, Shiraz, p. 1-6. (In Persian with English abstract) Information website: https://civilica.com/doc/250359/.
  3. Bamdadian, A. (1998). Fungicides and their application in agriculture, Brahmand Publications, Tehran, 235 p. (In Persian with English abstract)
  4. Bazgir, F., Shakarami, J., & Jafari, S. (2018). Life table and predation rate of Amblyseius swirskii (Acari: Phytoseiidae) fed on Eotetranychus frosti (Tetranychidae) and Cenopalpus irani (Tenuipalpidae), Systematic and Applied Acarology 23(8): 1614-1626.
  5. Calvo, F.J., Bolckmans, K., & Belda, J.E. (2011). Control of Bemisia tabaci and Frankliniella occidentalis in cucumberby Amblyseius swirskii, BioControl, 56(2), 185–192.
  6. Chmielewski, W. (1970) Studies of a food pest: the mite, Carpoglyphus lactis (L.). Roczniki Państwowego Zakładu Higieny 21(6): 611-7.
  7. Desneux, N., Decourtye, A., & Delpuech, J.M. (2007). The sublethal effects of pesticides on beneficial arthropods, Annual Review of Entomology 52: 81–106.
  8. Dore, A., Molinu, M.G., Venditti, T., & D'Hallewin, G. (2010). Sodium bicarbonate induces crystalline wax generation, activates host-resistance, and increases imazalil level in rind wounds of oranges, improving the control of green mold during storage. Journal Agricaltue Food Chemistry 58(12): 7297-304. http://doi.org/10.1021/jf101013j. PMID: 20486661.
  9. Dubey, S.C., Singh, B., & Tripathi A. (2018). Integrated management of wet root rot, yellow mosaic, and leaf crinkle diseases of urdbean by seed treatment and foliar spray of insecticide, fungicide, and biocontrol agent, Crop Protection 112: 269–273.
  10. Escudero, L.A., & Ferragut, F. (2005). Life-history of predatory mites Neoseiulus californicus and Phytoseiulus persimilis (Acari: Phytoseiidae) on four spider mite species as prey, with special reference to Tetranychus evansi (Acari: Tetranychidae), Biological Control 32: 378–384.
  11. Falahati-Rastegar, M. (1991). Illustrated key of mycology (ascomycetes). Mohammadi Typing and Reproduction Institute, Mashhad Publishing Company, 263 p. (In Persian with English abstract)
  12. Fouly, A.H., Al-Deghairi, M.A., & Abdel Baky, N.F. (2011). Biological aspects and life tables of Typhlodromips swirskii (Acari: Phytoseiidae) fed Bemisia tabaci (Hemiptera: Aleyroididae), Journal of Entomology 8: 52–62.
  13. Gerson, U., & Weintraub, P.G. (2012). Mites (Acari) as a factor in greenhouse management, Annual Review of Entomology 57: 229–247.
  14. Guedes, R.N.C., Smagghe, G., Stark, J.D., & Desneux, N. (2016). Pesticide-induced stress in arthropod pests for optimized integrated pest management programs, Annual Review of Entomology 61: 43–62.
  15. Hang, Y.D., & Woodams, E.E. (2003). Control of Fusarium oxysporum by baking soda. Lebensm -Wiss. u.-Technolgy, Food Science and Technology 36(8): 803–805.
  16. Horowitz, R., Denholm, I., & Morin, S. (2007). Resistance to insecticides in the TYLCV vector, Bemisia tabaci. In: H. Czosnek [ed.], Tomato Yellow Leaf Curl Virus Disease, Springer, Dordrecht, Netherlands, molecular biology, breeding for resistance, 305–325.
  17. Hosseininia, A., Khanjani, M., Asadi, M., & Soltani, J. (2020). Life-history of the predatory mite Amblyseius swirskii (Athias-Henriot) (Acari: Phytoseiidae) on Tetranychus urticae Koch (Acari: Tetranychidae), Carpoglyphus lactis Linnaeus (Acari: Carpoglyphidae) and Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae), Journal of Ornamental Plants 10(3): 155-166.
  18. Hosseininia, A., Khanjani, M., Khoobdel, M., & Javadi Khederi, S. (2017). Compare the efficiency of the current oils and insecticide compounds in control of greenhouse whitefly Trialeurodes vaporariorum (Westwood), (Hem.: Aleyrodidae) on rose and their interaction, Journal of Plant Protection 30(4): 718–726. (In Persian)
  19. Jafari, S., & Bazgir, F. (2015). Life history traits of predatory mite Typhlodromus (Anthoseius) bagdasarjani (Phytoseiidae) fed on Cenopalpus irani (Tenuipalpidae) under laboratory conditions, Systematic and Applied Acarology 20(4): 366–374.
  20. Javadi Khederi, S., & Khanjani, M. (2014a). Modeling demographic response to constant temperature in Bryobia rubrioculus (Acari: Tetranychidae), Ecologia Montenegrina 1(1): 18–29.
  21. Javadi Khederi, S., Khanjani, M., Babolhavaeji, H., Soleimani, M.A., & Asali Fayaz, B. (2014b). Population parameters of Tetranychus turkestani (Acari: Prostigmata: Tetranychidae) on fourteen melon genotypes. Persian Journal of Acarology 3(3): 217–234.
  22. Javadi khederi, S., Khoobdel, M., Khanjani, M., Hosseininia, A., Sadeghi Sorkhe Dizaji, B., Hosseini, S. M., & Sobati, H. (2019). Insecticidal effects of essential oils from two medicinal plants against Aleuroclava jasmini (Hemiptera: Aleyrodidae), Journal of Crop Protection 8(1): 57–67.
  23. Ji, J., Zhang, Y.X., Lin, J.Z., Chen, X., Sun, L., & Saito, Y. (2015). Life histories of three predatory mites feeding upon Carpoglyphus lactis (Acari, Phytoseiidae; Carpoglyphidae), Systematic and Applied Acarology 20(5): 491–496.
  24. Juan-Blasco, M., Qureshi, J.A., Urbaneja, A., & Stansly, P.A. (2012). Predatory mite, Amblyseius swirskii (Acari:  Phytoseiidae), for biological control  of Asian Citrus Psyllid, Diaphorina citri (Hemiptera: Psyllidae), Florida Entomologist 95: 543–551.
  25. Kang, Z., Huang, L., KriegA., Mauler-Machnik, A., & Buchenauer, H. (2001). Effects of tebuconazole on morphology, structure, cell wall components and trichothecene production of Fusarium culmorum in vitro. Pest Management Science: formerly Pesticide Science57(6): 491-500. http://doi.org/10.1002/ps.310.
  26. Lee, H.-S., & Gillespie, D.R. (2011). Life tables and development of Amblyseius swirskii (Acari: Phytoseiidae) at different temperatures, Experimental and Applied Acarology 53: 17–27.
  27. Liang, P., Tian, Y.A., Biondi, A., Desneux, N., & Gao, X.W. (2012). Short-term and transgenerational effects of the neonicotinoid nitenpyram on susceptibility to insecticides in two whitefly species, Ecotoxicology 21(7): 1889–1898.
  28. McMurtry, J.A., De Moraes, G.J. & Sourassou, N.F. (2013). Revision of the lifestyles of phytoseiid mites (Acari: Phytoseiidae) and implications for biological control strategies, Systematic and Applied Acarology, 18(4): 297-320. http://doi.org/10.11158/saa.18.4.1.
  29. Mohammadi Gol Tappeh, E., & Rezaei Danesh, Y. (2007). Investigation of the effect of two fungicides, benomyl and carbandazim, on the control of Trichoderma green mold in button mushroom breeding halls. Agricultural Knowledge 16(4): 157-165. (In Persian with English abstract)
  30. Müllenborn, C., Steiner, U., Ludwig, M., & Oerke, E.C. (2008). Effect of fungicides on the complex of Fusarium species and saprophytic fungi colonizing wheat kernels. European Journal of Plant Pathology120: 157–166. https://doi.org/10.1007/s10658-007-9204-y.
  31. Nowruzian, M. (2000). List of permitted poisons in the country. Plant Protection Organization Agricultural Information and Scientific Documentation Center, p., 110. (In Persian)
  32. Onzo, A., Houedokoho, A.F., & Hanna, R. (2012). Potential of the predatory mite, Amblyseius swirskii to suppress the Broad Mite, Polyphagotarsonemus latus on the Gboma Eggplant, Solanum macrocarpon, Journal of Insect Science 12: 1–7.
  33. Park, H.H., Shipp, L., & Buitenhuis, R. (2010). Predation, development, and oviposition by the Predatory Mite Amblyseius swirkii (Acari: phytoseiidae) on Tomato Russet Mite (Acari: Eriophyidae), Journal of Economic Entomology 103)3(: 563–569.
  34. Park, H.H., Shipp, L., Buitenhuis, R., & Ahn, J.J. (2011). Life history parameters of a commercially available Amblyseius swirskii (Acari: Phytoseiidae) fed on cattail (Typha latifolia) pollen and tomato russet mite (Aculops   lycopersici), Journal  of  Asia-Pacific Entomology 14(4): 497–501.
  35. Rahmani, A., Solgi, M., Ganji-Khorramdel, N., & Hosseini, S.M.R. (2015). Application of chitosan in environment and agriculture, the first national conference on applied research in environmental protection, Water and Natural Resources, Arak, , 20. (In Persian with English abstract). Information website: https://civilica.com/doc/392159.
  36. SAS Institute. (2005). SAS software version 9.2 SAS Institute, Cary.
  37. Seiedy, M., Soleymani, S., & Hakimitabar, M. (2016). Development and reproduction of the predatory mite Amblyseius swirskii Athias-Henriot (Acari: Phytoseiidae) on Tetranychus urticae Koch (Acari: Tetranychidae) and Bemisia tabaci Gennadius (Heteroptera: Aleyrodidae), International Journal of Acarology 43(2): 160-164.
  38. Townsend, G.K., & Heuberger, J.W. (1943). Methods for estimating losses caused by diseases in fungicide experiments. Plant Diseases . Reporter 27: 340-343.
  39. van Houten, Y , Hoogerbrugge, H., & Bolckmans, K.J. (2007). Spider mite control by four phytoseiid species with different degrees of polyphagy, IOBC/WPRS Bulletin 30(5): 123–127.
  40. Wimmer, D., Hoffmann, D., & Schausberger, P. (2008). Prey suitability of western flower thrips, Frankliniella occidentalis, and onion thrips, Thrips tabaci, for the predatory mite Amblyseius swirskii, Biocontrol Science and Technology 18(6): 533–542.
  41. Xu, C., Qiu, B.L., Cuthbertson, A.G.S., Zhang, Y., & Ren, S.X. (2012). Adaptability of sweet potato whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) on seven marginal host plants, International Journal of Pest Management 58(4): 297–301.
  42. Zamani, M., Tehrani, A.S., Ahmadzadeh, M., & Abadi, A.A. (2006). Effect of fluorescent pseudomonades and Trichoderma and their combination with two chemicals on Penicillium digitatum caused agent of citrus green mold. Communications in Agricultural and Applied Biological Sciences71(3): 1301-1310.
  43. Zamani,, Sharifi-Tehrani A., Alizadeh, A., & Abadi, A. (2007). Evaluation of antifungal activity of carbonate and bicarbonate salts alone or in combination with biocontrol agents in control of citrus green mold. Communications in Agricultural and Applied Biological Sciences 72(4): 773-777.

 

 

 

CAPTCHA Image