تفاوت‌های درون گونه‌ای بین اکوتیپ‌های علف‌هرز خارلته (Cirsium arvense L.)

نوع مقاله : مقالات پژوهشی

نویسنده

دانشکده کشاورزی و صنایع غذایی، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، تهران، ایران

چکیده

در ایران خارلته یکی از مهم­ترین علف­های هرز چند ساله در مزارع گندم، مراتع و زمین­های زراعی در اغلب استان­ها است. جهت مطالعه تفاوت­های ریخت شناسی 10 اکوتیپ خارلته، دو قطعه ریشه به طول 10 سانتی­متر در گلدان­های 25 کیلوگرمی حاوی خاک شنی-لومی کاشته شدند. بعد از گذشت 70 روز تعداد برگ­ها و شاخه­های ساقه اصلی، تعداد کاپیتول شمارش و طول ریشه، ارتفاع ساقه اصلی، طول کاپیتول و وزن خشک اندازه­گیری شد. در آزمایش دوم به منظور مطالعه اثر دما بر درصد و سرعت سبز شدن ریشه­ها، دماهای 1 تا 38 درجه سانتی­گراد مورد بررسی قرار گرفتند. نتایج آزمایش­ها نشان داد تفاوت معنی­داری در تمام صفات مورد بررسی به جزء طول کاپیتول بین اکوتیپ­ها وجود داشت. تجزیه خوشه­ای اکوتیپ­ها یک نمودار چنگالی با 4 گروه اصلی تولید کرد. گروه اول شامل اکوتیپ­های بابل، گنبد و مغان بود. اکوتیپ­های ورامین، شهرضا، مشهد، همدان و شیراز در خوشه دوم و اکوتیپ­های کرمانشاه و دزفول نیز به‌ترتیب متعلق به خوشه­های سوم و چهارم بودند. در مرحله بعد روی ماتریس همبستگی داده­ها تجزیه به مولفه­های اصلی انجام شد در کل 3 مولفه اصلی حدود 80/20 درصد تغییرات کلی داده­ها را توجیه نمودند. مولفه اول 34/33 درصد تغییرات را توجیه نمود. ارتفاع ساقه اصلی، وزن خشک کل و تعداد برگ با این مولفه دارای همبستگی مثبت بودند و وزن خشک اندام هوایی با آن همبستگی منفی داشت. مولفه دوم 33/82 درصد تغییرات کل داده­ها را توجیه نمود. وزن خشک اندام زیرزمینی و طول ساقه + ریشه در این مولفه ضرایب بالایی داشتند. مولفه سوم 12/03 درصد تغییرات را در برگرفت که تنها تعداد کاپیتول در هر شاخه همبستگی بالای مثبتی با این مولفه داشت. دمای پایه تخمین زده شده برای اکوتیپ‌های بابل، ورامین، شهرضا، گنبد، مشهد، دزفول، کرمانشاه، مغان، همدان و شیراز به‌ترتیب 5/34، 4/91، 5/98 ،5/70، 4/42، 6/52، 3/12، 6/26 ،3/80 و 5/91 درجه سانتی­گراد و درجه روز-رشد سبز شدن 201، 210، 200، 205، 190، 220، 182، 202، 190 و 210 به دست آمد. درک بهتر اثرات افزایش دما بر سبز شدن در شرایط محیطی متغیر توانایی راهکارهای موجود مدیریتی را در مدیریت علف­های هرز بهبود بخشیده و به توسعه راهکارهای جدید می­انجامد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Intra-specific Variations among Different Canada Thistle (Cirsium arvense L.) Ecotypes

نویسنده [English]

  • M. Diayanat
Department of Agricultural Sciences and Food Industries, Science and Research Branch, Islamic Azad University, Tehran, Iran
چکیده [English]

Introduction: Canada thistle (Cirsium arvense L.( occurs in pastures and wheat fields and is common in most provinces, where it is considered a major agricultural weed in Iran. Increasing our understanding of the environmental factors that determine Canada thistle emergence can provide strategies to control it. Therefore, in this paper the morphological characteristics of 10 ecotypes collected from different regions of Iran and the effect of temperature on the percentage and rate of emergence of root buds in controlled conditions were investigated. Temperature was considered as the treatment because it is one of the most important factors that fluctuate between the diffusion regions in Iran.
Materials and Methods: To evaluate any morphological differences among ecotypes of Canada thistle, root fragments were collected from 10 provinces of Iran in 2020. To reduce the effect of the environment, the roots were propagated again in pots in the greenhouse under controlled conditions. Day and night temperatures were 30 and 15 °C, respectively. The root pieces were then harvested and stored at 5 °C for 3 months. Two 10 cm long roots with same weight and same number of buds were planted in pots containing loamy sandy soil. The pots were irrigated during the experiment and the plants were not exposed to water stress. A Completely Randomized Design was conducted at Science Research Branch, Islamic Azad University. After 70 days plants were harvested. The numbers of leaves and branches on the main shoot and number of capitulum were counted and the root length, height of the main shoot and capitulum length were measured. Data analysis of variance was performed using SAS software and means were compared using protected LSD test. Cluster analysis was performed by calculating the Euclidean distance for grouping populations using SPSS software and its dendrogram was drawn. The root and shoot dry weights were measured after drying at 70 °C for 48 h after harvest. At second experiment, temperatures 1- 38° C were evaluated for studying the effect of temperature on percent and rate of shoot emergence. Base temperature (temperature at which the germination rate is zero) was obtained using the linear regression equation between germination rate and temperature.
Results: There were significant differences at morphological traits among Canada thistle ecotypes except capitulum length. Root dry weight varied from 8 g in Gonbad ecotype to 11.5 g in Varamin ecotype. Total dry weight was the lowest in Hamedan and was not significantly different from Mashhad and Gonbad ecotypes. The highest total dry weight belonged to Shiraz ecotype. Cluster analysis grouped 10 ecotypes at four groups. First group consisted of Babol, Gonbad and Moghan ecotypes. Varamin, Shahreza, Mashhad, Hamedan and Shiraz placed at second group. Kermanshah and Dezful were placed at third and fourth groups, respectively. In the next step, the data were correlated into principal components on the correlation matrix. In total, the three main components explained about 80.20% of the total data changes. The first component explained 34.33% of the changes. Main stem height, total dry weight and number of leaves had a positive correlation with this component and shoot dry weight had a negative correlation with it. The second component explained 33.82% of the changes in the total data. Groundwater dry weight and total stem + root length had high coefficients in this component. The third component accounted for 12.03% of the changes, with only the number of capitols in each branch having a high positive correlation with this component. The estimated base temperatures for the emergence of bud root were 5.34, 4.91, 5.98, 5.70, 4.42, 6.52, 3.12, 6.26, 3.80 and 5.91°C for Babol, Varamin, Shahreza, Gonbad, Mashhad, Dezful, Kermanshah, Moghan, Hamedan and Shiraz ecotypes, respectively. Emergence growth degree day for Babol, Varamin, Shahreza, Gonbad, Mashhad, Dezful, Kermanshah, Moghan, Hamedan and Shiraz were 201, 210, 200, 205, 190, 220, 182, 202, 190 and 210, respectively.
Conclusion: Temperature had a significant influence on the root of Canada thistle. When the temperature was below 3°C, no emergence occurred. Temperature affected not only the percentage of emergence but also the emergence rate. There was a significant linear relationship between the emergence rate and incubation temperature. High temperature probably causes activation of the enzymatic and physiological function of root buds and increases the rate of mobilization of nutrient reserves to the growing belowground shoots.

کلیدواژه‌ها [English]

  • Capitule number emergence temperature base
  • Emergence rate
  • Growing degree day
  • Shoot dry weight
  1. Bodo Slotta T.A., Foley M., Chao S.H., Hufbaue R.A., and Horvath D.P. 2010. Assessing genetic diversity of Canada thistle (Cirsium arvense) in North America with microsatellites. Weed Science 58: 387-394.
  2. Bodo Slotta T.A., Horvath D.P., and Foley M.E. 2006. Relationships of weedy and native thistles (Cirsium) in the Northern Great Plains. – Weed Science Society of America.
  3. Bodo Slotta T.A., and Horvath D.P. 2005. Development of poly-morphic markers for Cirsium arvense, Canada thistle, and their amplification in closely related taxa. Molecular Ecology Notes 5: 917-919.
  4. Cardina J., and Brecke B.J. 1989. Growth and development of Florida beggarweed (Desmodium tortuosum) selections. Weed Science 37: 207–210.
  5. Donald W.W. 2000. A degree-day model of Cirsium arvense shoot emergence from adventitious root buds in spring. Weed Science 48: 333-341.
  6. Ghersa C.M., Satorre E.H., Van ESSO M.L., Pataro A., and Elizagaray, R. 1990. The use of thermal calendar models to improve the efficiency of herbicide applications in Sorghum halepense (L.) Pers. Weed Research 30: 153–60.
  7. Goodwin M.S., Morrison I.N., and Thomas A.G. 1986. A weed survey of pedigreed alfalfa seed fields in Manitoba. Canadian Journal of Plant Science 66: 413–416.
  8. Hakansson S. 2003. Weeds and weed management in arable land: An ecological approach. CABI Publishing, Wallingford, UK. 274 pp.
  9. Hodgson J.M. 1968a. The nature, ecology and control of Canada thistle. U.S. Dep. Agric. Tech. Bull. 1386. 32 pp.
  10. Hodgson J.M. 1968b. Canada thistle and its control. U.S. Dep. Agric. Leaf. No. 523. 8 pp.
  11. Holshouser D.L., Chandler J.M., and Wu H.I. 1996. Temperature-dependent model for non-dormant seed germination and rhizome bud break of Johnsongrass (Sorghum halepense). Weed Science 44: 257–265.
  12. Holt J.S., and Orcutt D.R. 1996. Temperature thresholds for bud sprouting in perennial weeds and seed germination in cotton. Weed Science 44: 523–533.
  13. Hossain A.M., Akamine H., Nakamura Yukioishimine I., and Kuramochi H. 2001. Influence of temperature levels and planting time on the sprouting of rhizome-bud and biomass production of torpedo grass (Panicum repens) in Okinawa Island, southern Japan. Weed Biology and Management 1: 164–169.
  14. Huang W.Z., Hsiao A.I., and Jordan L. 1987. Effects of temperature, light and certain growth regulating substances on sprouting, rooting and growth of single-node rhizome and shoot segments of Paspalum distichum Weed Research 27: 57-67.
  15. Hubner R., Fykse H., Hurle K., and Klemsdal S.S. 2003. Morphological differences, molecular characterization, and herbicide sensitivity of catchweed bedstraw (Galium aparine) population. Weed Science 51: 214-225.
  16. Hunter J.H., and Smith L.W. 1972. Environment and herbicide effects on Canada thistle ecotypes. Weed Science 20: 163-167.
  17. Hutman H., Kester D., and Davis F. 1990. Plant propagation, principle and practices, Prentice Hall Imitational Edition. 647 p.
  18. Kawabata O., and Nishimoto R.K. 2003.Temperature and rhizome chain effect on sprouting of purple nutsedge (Cyperus rotundus) ecotypes. Weed Science 51: 348–355.
  19. Klingaman T.E., and Oliver L.R. 1996. Existence of ecotypes among populations of entireleaf morningglory (Ipomoea hederacea integriuscula). Weed Science 44: 540–544.
  20. Krueger-Mangold J., Sheley R.L., and Roos B.D. 2002. Maintaining plant community diversity in a waterfowl production area by controlling Canada thistle (Cirsium arvense) using glyphosate. Weed Technology 16: 457-463.
  21. Kurokawa S., Shimizu N., Uozumi S., and Yoshimura Y. 2003. Intraspecific variation in morphological characteristics and growth habit of newly and accidentally introduced velvetleaf (Abutilon theophrasti) into Japan. Weed Biology and Management 3: 28–36.
  22. Li B., Shibuya T., Yogo Y., and Hara T. 2000. Effects of temperature on bud-sprouting and early growth of Cyperus esculentus in the dark. Journal of Plant Research 113:19–27.
  23. Link A.J., and Kommedahl T. 1958. Canada thistle - spotlight on a troublesome weed. Minnesota Farm and Home Science 15: 2l-22.
  24. Lym R.G., and Duncan C. 2005. Canada thistle (Cirsium arvense (L.) Scop. pp 69-83. In C.A. Duncan, and J.K. Clark (eds.) Invasive Plants of Range and Wild lands and their Environmental, Economic and Societal Impacts. Weed Science Society of America, Allen Press.
  25. Maxwell B.D., Lehnhoff E.A., and Rew L.J. 2009. The rationale for monitoring invasive plant populations as a crucial step for management. Invasive Plant Science Managment 2: 1-9.
  26. Moore R.J. 1975. The biology of Canadian weeds. 13. Cirsium arvense (L.) Scop. Canadian Journal of Plant Science 55: 1033-1048.
  27. Morishita D.W. 1999. Canada thistle. Pages 162–174. In R.L. Sheley and J.K. Petroff, (eds.). Biology and Management of Noxious Rangeland Weeds. Corvallis, OR: Oregon State University.
  28. Nadeau L.B., and Vanden Born W.H. 1989. The root system of Canada thistle. Canadian Journal of Plant Science 69: 1199–1206.
  29. Nezamabadi N., Rahimian mashhadi H., Zand E., and Alizadeh H.M. 2006. Investigation of some ecophysiological aspects of Iicorice Glycyrrhiza glabra. Pest and Diseases Plant 74: 45-61.
  30. Nilsen E.T., and Orcutt D.M. 1996. Physiology of Plants under Stress: Abiotic Factors. John Wiley and Sons, New York.
  31. Norris R.F. 1996. Morphological and phenological variation in barnyard grass (Echinochloa crus-galli) in California. Weed Science 44: 804–814.
  32. Ransom C.V., Kelis J.J., Was, L.M., and Orfanedes M.S. 1998. Morphological variation among hemp dogbane (Apocynum cannabinum) populations. Weed Science 46: 71-75.
  33. Rechynger K.H. 1979. Cirsium Pages 231–280. In K.H. Rech´ynger, (ed.). Flora Iranica, Tomus 139a. Compositae III—Cynareae. Graz, Austria: Akademishe Druck-und-Verlansanstalt.
  34. Riesinger P., and Hyvönen T. 2006. Impact of management on weed species composition in organically cropped spring cereals. Biological Agricultural Horticulture 24: 257–274.
  35. Rew L.J., Lehnhoff E.A., and Maxwell B.D. 2007. Nonindigenous species management using a population prioritization framework. Canadian Journal of Plant Science 87: 1029-
  36. Saidak W.J., and Marriage P.B. 1976. Response of Canada thistle varieties to amitrole and glyphosate. Canadian Journal of Plant Science 56: 211-214.
  37. Salonen J., Hyvönen T., and Jalli H. 2001. Weed flora in organically grown spring cereals in Finland. Agricultural and Food Science in Finland 10: 231–242.
  38. Satorre E.H., Ghersa C.M.G., and Pataro A.M. 1985. Prediction of Sorghum halepense (L.) Pers. rhizome sprout emergence in relation to air temperature. Weed Research 25: 103-109.
  39. Satorre E.H., Rirro F.A., and Arias S.P. 1996. The effect of temperature on sprouting and early establishment of Cynodon dactylon. Weed Research 36: 431-440
  40. Seif E., Sheidai M., Norouzi M., and Noormohammadi Z. 2012. Biosystematic studies of Cirsium arvense populations in Iran. Phytologia Balcanica 18: 305–314.
  41. Skinner K., Smith L., and Rice P. 2000. Using noxious weed lists to prioritize targets for developing weed management strategies. Weed Science 48: 640–644.
  42. Sole M., Durka W., Eber S., and Brandl R. 2004. Genotypic and genetic diversity of the common weed Cirsium arvense (Asteraceae). International Journal of Plant Science 165: 437–444.
  43. Spencer D.F., and Ksander G.G. 2006. Estimating Arundo donax ramet recruitment using degree-day based equations. Aquatic Botany 85: 282–288.
  44. Thomas A.G., Frick, B.L., and Hall L.M. 1998. Alberta Weed Survey of Cereal and Oilseed Crops in 1997. Saskatoon, SK, Canada: Agriculture Canada, Weed Survey Series Publ. 98-2. 283 p.
  45. Tiley G.E.D. 2010. Biological flora of the British Isles: Cirsium arvense (L.) Scop. Journal of Ecology 98: 938–983.
  46. Townsend C.R., Begon M., and Harper J.L. 2003. Essentials of ecology, 2nd edn. Blackwell Publishing Ltd., Malden, USA.
  47. Travlos I.S., Economou G., Kotoulas V.E., Kanatas P.J., Kontogeorgos A.N., and Karamanos A. 2009. Potential effects of diurnally alternating temperatures and solarization on purple nutsedge (Cyperus rotundus) tuber sprouting. Journal of Arid Environment 73: 22–25.
  48. Van Driesche R.G., Blossey B., Hoddle M., Lyon S., and Reardon R. 2002. Biological Control of Invasive Plants in the Eastern United States. Morgantown, WV: USDA Forest Service, FHTET-2002-04.
  49. Wassom J.J., Tranel P.J., Wax L.M. 2002. Variation among U.S. accessions of common cocklebur (Xanthium strumarium). Weed Technology 16: 171–179.
  50. White D.E. 1979. Physiological Adaptations in Two Ecotypes of Canada Thistle, Cirsium arvense (L.) M.S. Thesis, Univ. California, Davis, CA. 69 p.
  51. Zouhar K. 2001. Cirsium arvense. – In: Fire Effects Information System. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). http://www.fs.fed.us/database/feis/ (accessed February 2012).