نشانگرهای ریزماهواره‌ای و کاربرد آن در تجزیه و تحلیل تنوع ژنتیکی جمعیت‌های بالتوری سبز (Neuroptera:Chrysopidae) (Stephens, 1836) Chrysoperla carnea

نوع مقاله : مقالات پژوهشی

نویسندگان

1 گروه گیاه‌پزشکی، پردیس کشاورزی و منابع طبیعی دانشگاه رازی، کرمانشاه

2 استاد حشره شناسی. گروه گیاه پزشکی دانشگاه رازی کرمانشاه

3 گروه گیاه پزشکی دانشکده کشاورزی دانشگاه رازی کرمانشاه

4 گروه زراعت و اصلاح نباتات دانشکده کشاورزی دانشگاه رازی کرمانشاه

چکیده

مطالعات کمی روی تنوع و ساختار ژنتیکی دشمنان طبیعی آفت‌ها که به عنوان عوامل کنترل زیستی نیز شناخته می‌شوند، در کشور انجام شده است. این پژوهش با هدف مقایسه تنوع­ژنتیکی جمعیت­های بالتوری­سبز Chrysoperla carnea انجام شد. جمعیت­های مختلف از چهارده استان کشور شامل استان­های آذربایجان­شرقی، آذربایجان­غربی، اصفهان، کرمان، کرمانشاه، لرستان، مازندران، گیلان، هرمزگان، تهران، کردستان، شیراز، زنجان و همدان جمع­آوری شدند. این جمعیت‌ها با جمعیت­های هلندی با استفاده از 10 نشانگر مولکولی ISSR مقایسه شدند. بیشترین درصد چند­شکلی مربوط به جایگاه ژنی UBC-809 به میزان 88/88 درصد و کمترین آن متعلق به جایگاه ژنی UBC-886 به میزان 33/33 درصد بود. کمترین فاصله ژنتیکی جمعیت هلندی با جمعیت­های مورد مطالعه، مربوط به جمعیت استان گیلان و بیشترین فاصله ژنتیکی با جمعیت استان کرمان بود. میانگین تعداد آلل، برای جمعیت هلندی، گیلان و کرمان به‌ترتیب معادل، 6/9، 6/6، 4/1 و میانگین تعداد آلل موثر، 1/48، 1/41 و 1/19 بدست آمد. مطالعه حاضر نشان داد که نشانگرهای ISSR در مطالعه تنوع­ژنتیکی این حشره کارایی بالایی دارند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Use of Microsatellite Markers for Analysis of Genetic Diversity between Populations of Green Lacewings Chrysoperla carnea (Neuroptera, Chrysopidae)

نویسندگان [English]

  • F. Abdolahadi 1
  • A. Mirmoayedi 2
  • S. Jamali 3
  • L. Zarei 4
1 Department Plant Protection, Campus of Agriculture and Natural Resources Razi University, Kermanshah, Iran
2 Professor of Entomology Razi university, Kermanshah, Iran.
3 Department Plant Protection, Campus of Agriculture and Natural Resources Razi University, Kermanshah, Iran
4 Department Plant Production and Genetic Engineering, Campus of Agriculture and Natural Resources Razi University, Kermanshah, Iran
چکیده [English]

Introduction: Green lacewings are active predators of Aphids, Psylids, Mealy bugs. We used ISSR markers with 10 primers to evaluate the genetic polymorphism between populations of Chrysoperla carnea collected in 30 cities of 14 provinces of Iran with different climatic conditions and compared them with specimens of a population from Netherlands. Maximum and minimum of polymorphism were calculated successively of 88.88% for UBC-809 and 33.33% for UBC-886 primers. The Dutch specimens had the smallest genetic distance with populations of Guilan province and the largest genetic distance to Kerman province. The mean number of alleles for Dutch, Guilan and Kerman populations were successively 6.9, 6.6 and 4.1 and mean number of effective alleles were successively 1.48, 1.41 and 1.19.
Materials and Methods: 2000 specimens of Chrysoperla carnea collected from alfa alfa plantations in each of 14 provinces of Iran, 27 specimens sampled from each province besides another 27 specimens of a Dutch population acquired from Hamedan center for Science and technology and DNA extracted using Topaz Inc. kit , ISSR marker with 10 primers used. BioRad® thermocycler was used for PCR and PCR end product was electrophoresed in 2% Agarose gel and stained with ethidium bromide. Bands photographed using Gel Doc 2000. Hardy-weinberg’s chi square ( χ2)  equation was used for evaluate of equilibrium in the number of polymorphic alleles,Shannon and Nei indice for evaluation of heterozygosity, POPGENE for genetic distance , GenAlex 6  for cluster analysis, AMOVA for analysis of inter and intra populations diversity.   
Results and Discussion: The total number of electrophoresis bands were 64 bands, 43 of them were polymorphic The range of changes of allelic sizes of primers were between 150-1500 bp. Polymorphic information content(PIC) was between 0.302-0.643 the maximum of it belonged to the primerUBC-809 and the minimum belonged to the primer UBC-812 (Table 3). In three populations of Dutch, Guilan and Kerman the maximum of alleles were seen in gene locus of UBC-809 suggesting that it is highly polymorphic, similar findings was found by Barbosa and co-workers. As in Fig (2) the cluster analysis based on use of Jaccard similarity coefficient, the populations clustered in three groups, the Dutch population together with those of Guilan, Mazendaran, Lorestan, East and west Azerbaijan provinces were gathered in the first cluster and populations of Kerman, Sistan and Beluchestan, Isfahan and Fars province were gathered in the second cluster and the populations of Hamedan, Zanjan, Kermanshah, Tehran and Kudistan provinces were in the third cluster. Principal Component analysis was also done, Eigen values, variances percentage and cumulative variances percentages by independent components and the range of variations represented by these components was shown in Table (5). 100% of variations were represented by first ten independent components. The first, second and third components successively represented 27.68,20.57 and 13.01 percentages of all variations.These components independently from each other  represented  a percent of genetic diversity, not already  known. The maximum of Shannon index was seen in gene locus of UBC-809was 0.53 in Guilan province and the minimum 0.04 in Kerman province.These data were conceivable because there were nine alleles in gene locus of UBC-809 in population of Guilan province and two alleles in gene locus of UBC-812 in populations of Kerman province, the same index was calculated 0.58 for Dutch population. The maximum and the minimum of Nei’s index (H) of gene diversity was calculated 0.35for gene locus of UBC-809 in Guilan province and 0.009 for gene locus of UBC-812 in Kerman province successively and for Dutch population the index was 0.39. The maximum and minimum of observed heterozygosity (Ho) was 0.49 in gene locus of UBC-809 in Guilan and 0.031 in gene locus of UBC-812 in Kerman province successively. The maximum and minimum of expected heterozygosity was calculated as 0.579 in gene locus of UBC-809 in Mazendaran province and 0.034 in gene locus of UBC-886 in Hormozgan province successively. Having nine alleles in its gene locus and getting of maximum observed and expected heterozygosity therefore we can consider the UBC-809 primer as the best gene locus to express of gene diversity in all Chrysoperla carnea populations studied in our present study. We used χ2 of Hardy-Weinberg equilibrium for all alleles studied, and with regard to H0(Equilibrium in alleles frequency in studied populations) the  most well adapted status   to Hardy-weinberg equilibrium was seen in gene loci of UBC-809, some of populations and gene loci did have Hardy-Weinberg equilibrium but others did have significant biases from this equilibrium which should be attributed to inadequate  number of samples chosen (sampling errors) in the studied populations and or  existence of non-reproducing  alleles. Our study on population genetic diversity of Chrysoperla carnea showed that ISSR-PCR markers are the best to study the polymorphism of populations of this species, did not study hitherto in Iran.The primers   used by us in this study for Chrysoperla carnea was equally used for other orders of insects such as Lepidoptera and Coleoptera (UBC-809) and used for order of Hemiptera (UBC-812, UBC-819).
Conclusion: More genetic diversity of alleles in populations of Chrysoperla carnea collected from non-treated alfa alfa plantations than those treated with insecticides. Similar results was obtained in Brazil concerning populations of Chrysoperla externa. Our present study on Chrysoperla carnea in Iran showed us the similarity between gene frequencies in the studied provinces, similar results was found for other species of Chrysoperla. Some authors believe that reduction in heterozygotes alleles in population was caused by a reduction in effective number of alleles in that population. The decrease of allele's diversity could bring about a reduction of populations, even species, as well as the reproduction vigor of populations in a new environment. In insect breeding programs a reduction in genetic diversity has an impact of reduction of fitness or even the loss of fitness in such an environment in which those populations should be released.  We propose that our research on heterozygosity of populations of Chrysoperla carnea to be continued in more agroecosystems in Iran with a similar or different molecular markers to have more informations about populations genetic diversity and finally to consider a logical management for preserving genetic reservoirs of them.

کلیدواژه‌ها [English]

  • Chrysoperla carnea
  • ISSR primers
  • geographical populations
  • Genetic diversity
1-Abbot P. 2001. Individual and population variation in invertebrates revealed by Inter-simple Sequence Repeats (ISSR). Journal of Insect Science 1(1): 1-8.
2-Andrews C.A. 2010.Natural Selection, Genetic Drift, and Gene Flow Do Not Act in Isolation in Natural Population Nature Education Knowledge 3 (10):5, Available at https://www.nature .com/scitable/knowledge/library/natural-selection-genetic-drift-and-gene-flow-15186648/#(visited 15.December2020).
3-Barbosa N.C., Freitas S.D., and Morales A.C. 2014. Distinct genetic structure in populations of Chrysoperla externa (Hagen)(Neuroptera, Chrysopidae) shown by genetic markers ISSR and COI gene. Revista Brasileira de Entomologia 58(2): 203-211.
4-Borba R.D.S., Garcia M.S., Kovaleski A., Oliveira A.C., Zimmer P.D., Castelo Branco J.S., and Malone G. 2005. Genetic dissimilarity of lines of Trichogramma Westwood (Hymenoptera: Trichogrammatidae) through ISSR markers Neotropical Entomology 34(4): 565-569.
5-Canard M., McEwen P., New T., and Whittington A. 2001. Natural food and feeding habits of lacewings. Lacewings in the Crop Environment 1: 116-129.
6- Chatterjee SN., and Mohandas T.P. 2003. Identification of ISSR markers associated with productivity traits in silkworm, Bombyx moni L, 46(3): 438-47.
7- Costa R.I., Souza B., and de Freitas S. 2010. Spatio-Temporal Dynamic of Green Lacewings (Neuroptera: Chrysopidae) Taxocenosis on Natural Ecossystems. Neotropical Entomology 39(4): 470-475.
8- Duran C., Appleby N., Edwards D., and Batley J. 2009. Molecular genetic markers: discovery, applications, data storage and visualisation. Current Bioinformatics 4(1): 16-27.
9- Fumagalli L., Snoj A., Jesenšek D., Balloux F., Jug T., Duron O., Brossier F., Crivelli A.J., and Berrebi, P. 2002. Extreme genetic differentiation among the remnant populations of marble trout (Salmo marmoratus) in Slovenia. Molecular Ecology 11(12): 2711-2716.
10- Huala L., Paredes M., Salazar L., Elgueta M., and Rebolled R. 2018. Genetic variability in Aegorhinus superciliosus (Coleoptera: Curculionidae) populations in Chilean Maytenus boaria (Celastrales: Celastraceae). Revista Colombiana de Entomología 44(2): 260-265
11- Hufbauer R.A., and Roderick G.K. 2005. Microevolution in biological control: mechanisms, patterns, and processes. Biological Control 35(3): 227-239.
12- Hundsdoerfer A.K., and Wink M. 2009.Experimental population genetics in insects: inheritance of ISSR-PCR bands in an artificial population. Zootaxa 2231(1): 40–46.
13- Khidr S.K., Hardy I.C., Zaviezo T., and Mayes S. 2014. Development of microsatellite markers and detection of genetic variation between Goniozus wasp populations. Journal of insect science (Online), 14, 43. Available at https://doi.org/10.1093/jis/14.1.43 (visited 8.December 2020).
14- Lourenço P., Brito C., Backeljau T., Thierry D., and Ventura M. 2006. Molecular systematics of the Chrysoperla carnea group (Neuroptera: Chrysopidae) in Europe. Journal of Zoological Systematics and Evolutionary Research 44(2): 180-184.
15- Luque C., Legal L., Staudter H., Gers C., and Wink M. 2002. ISSR (inter simple sequence repeats) as genetic markers in Noctuids (Lepidoptera). Hereditas 136(3): 251-253.
16- McEwen P., New T., and Whittington A.E. 2001. Lacewings in the crop environment. Cambridge university press.
17- Miller N., Birley A., Overall A., and Tatchell G. 2003. Population genetic structure of the lettuce root aphid, Pemphigus bursarius (L.), in relation to geographic distance, gene flow and host plant usage. Heredity 91(3): 217-223.
18- Mirmoayedi A. 2002. New records of Neuroptera from Iran. Acta Zoologica Academiae Scientiarum Hungaricae, 48: 197-201.
19- Mirmoayedi A., Rashidikhah F., Kahrizi D., Yari K. 2018. Genetic relationship between neuropteran families (Insecta, Neuropterida, Neuroptera) based on cytochrome oxidase sequences.- Genetika 50(2): 717-730.
20- Morales A.C and Freitas S .2010. Haplotype characterization of the COI mitochondrial gene in Chrysoperla externa ( Neuroptera: Chrysopidae) from different environments in Jaboticabal, state of São Paulo, southeastern Brazil. Brazilian Journal of Biology 70(4): 1115-1121.
21- Morales A., Lavagnini T., and Freitas S. 2013. Loss of genetic variability induced by agroecosystems: Chrysoperla externa (Hagen)(Neuroptera: Chrysopidae) as a case study. Neotropical Entomology 42(1): 32-38.
22- Nei M. 1972. Genetic distance between populations. The American Naturalist 106(949): 283-292.
23- Pappas M., Broufas G., and Koveos D. 2011. Chrysopid predators and their role in biological control. Journal of Entomology 8(3): 301-326.
24- Peakall R., and Smouse P.E. 2006. Genalex 6: Genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6(1): 288-295.
25- Rahimi A., Miromayedi A., Kahrizi D., Abdolshahi R., Kazemi E., and Yari KH. 2014. Microsatellite genetic diversity of Apis mellifera meda skorikov. Molecular Biology Reports 41: 7755–7761.
26- Rahimi A., Mirmoayedi A., Kahrizi D., Zarei L., and Jamali S. 2016.Genetic diversity of Iranian honey bee (Apis mellifera meda Skorikow, 1829) populations based on ISSR markers. Rahimi et al. Cellular and Molecular Biology 62(4): 53-58.
27- Reed D.H., Lowe E.H., Briscoe D.A., and Frankham R. 2003. Fitness and adaptation in a novel environment: effect of inbreeding, prior environment, and lineage. Evolution 57(8): 1822-1828.
28- Roux O., Gevrey M., Arvanitakis L., Gers C., Bordat D., and Legal L. 2007. ISSR-PCR: Tool for discrimination and genetic structure analysis of Plutella xylostella populations native to different geographical areas. Molecular Phylogenetics and Evolution 43(1): 240-250.
29- Royan M., Rahimi G., Esmaeilkhanian S., Mirhoseini S., and Ansari Z. 2007. A study on the genetic diversity of the Apis mellifera meda population in the south coast of the Caspian Sea using microsatellite markers. Journal of Apicultural Research 46(4): 236-241.
30- Saha D., Ranjan S.K., Mallick C.B.,Vidyarthi A.S., and Ramani R. 2011. Genetic diversity in lac resin-secreting insects belonging to Kerria spp., as revealed through ISSR markers. Biochemical Systematics and Ecology 39(2): 112-120.
31- Souza G.A.D., Carvalho M.R.D.O., Martins E.R., Guedes R.N.C., and Oliveira L.O.D. 2008. Genetic diversity estimated through ISSR markers in populations of Zabrotes subfasciatus. Pesquisa Agropecuária Brasileira 43(7): 843-849.
32- Taylor S., Downie D., and Paterson I. 2011. Genetic diversity of introduced populations of the water hyacinth biological control agent Eccritotarsus catarinensis (Hemiptera: Miridae). Biological Control 58(3): 330-336.
33- Vaulin O., Zharikov T.Y., Gunderina L., and Zakharov I. 2006. Variability and differentiation of genomic DNA in the Drosophila melanogaster populations of Russia and Ukraine. Drosophila Information Service 89: 59-62.
34- Vianna M.F., Pelizza S., Russo M.L., Toledo A., Mourelos C., and Scorsetti A.C. 2020.ISSR markers to explore entomopathogenic fungi genetic diversity: Implications for biological control of tobacco pests. Journal of  Biosciences 45, 136. Available at https://doi.org/10.1007/s12038-020-00108-4 (visited 7. December 2020)
35- Wells M.M. 1994. Small genetic distances among populations of green lacewings of the genus Chrysoperla (Neuroptera: Chrysopidae). Annals of the Entomological Society of America 87(6): 737-744.
36- Yeh F.C. 1999. POPGENE (version 1.3. 1). Microsoft Window-Bases Freeware for Population Genetic Analysis.Available at  http://www. ualberta. ca/~ fyeh/.(visited 7.December 2020)