بررسی واکنش چند رقم غیرهیبرید و هیبرید گوجه‌فرنگی به بیماری خال‌زدگی باکتریایی

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی ارشد رشته بیماری‌شناسی گیاهی، گروه گیاه‌پزشکی، دانشکده کشاورزی و منابع طبیعی، دانشگاه ارومیه، ارومیه، ایران.

2 استادیار مؤسسه تحقیقات گیاه‌پزشکی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران

چکیده

بیماری خال­زدگی باکتریایی گوجه­فرنگی که توسط باکتری Pseudomonas syringae pv. tomato ایجاد می­شود، یکی از بیماری­های مهم گوجه­فرنگی در جهان و ایران است که می­تواند به طور جدی میزان عملکرد و کیفیت محصول را تحت تاثیر قرار دهد. این بیماری بذربرد است بنابراین موثرترین راهکار در کنترل بیماری، استفاده از بذر و نشاء سالم و عاری از باکتری می­باشد اما از روش­های دیگری از قبیل استفاده از ارقام مقاوم یا متحمل، رعایت اصول بهداشتی، تناوب کاشت و کاربرد سموم باکتری­کش، نیز در مدیریت تلفیقی بیماری استفاده می­شود. در این پژوهش، واکنش 24 رقم (غیرهیبرید و هیبرید) گوجه­فرنگی در برابر بیماری خال­زدگی باکتریایی در محیط گلخانه مورد مطالعه قرار گرفت. برای این منظور، از گیاهچه­های چهار تا پنج برگی گوجه­فرنگی استفاده شد و مایه­زنی به صورت اسپری سوسپانسیون (OD600) CFU ml-1 107×1 باکتری بیماری­زا روی گیاهچه­ها انجام شد. در بررسی مقاومت ارقام مورد مطالعه، زمان ظهور اولین نشانه­های بیماری، شدت بیماری ایجاد شده و سطح زیر منحنی پیشرفت بیماری (AUDPC) مورد ارزیابی قرار گرفت. نتایج نشان داد، شاخص AUDPC با زمان ظهور اولین نشانه­های بیماری (0/71=r) و شاخص شدت بیماری (0/76=r) همبستگی مثبت داشت اما زمان ظهور اولین نشانه­های بیماری با شدت بیماری (0/22=r) همبستگی معنی­داری نداشت. بر اساس یافته­های این پژوهش، نتایج حاصل از ارزیابی چند شاخص مختلف در بررسی واکنش ارقام گیاهی به بیماری­ها، اطلاعات دقیق­تری در رابطه با میزان حساسیت یا مقاومت ارقام به بیماری ارائه می­دهد. در این مطالعه، ارقام هیبرید Hyb. 1585، Hyb. Superset، King stone، Hyb. Bellariva وHyb. Firenze، همچنین رقم غیرهیبرید Super Chef، به­عنوان ارقام با مقاومت بالاتر در برابر بیماری خال­زدگی باکتریایی گوجه­فرنگی ارزیابی شدند که استفاده از این ارقام در مدیریت تلفیقی این بیماری توصیه می­گردد.

کلیدواژه‌ها

موضوعات


  1. Allahyari S., Khezri M., and Sadeghinasab F. 2017. A study on tomato gram-negative pathogenic bacteria in West Azarbaijan. p 279. In: Proceedings of the 1st International and 5th National Congress on Organic vs. Conventional Agriculture. 6-17 August. University of Mohaghegh Ardabili, Ardabil, Iran.
  2. Bakir V., Özdemіr Z., and Yardim H. 2012. Reaction of some popular hybrid tomato cultivars grown in Aegean region to bacterial speck disease and determination of disease incidence in Şahnalı, Aydın. The Journal of Turkish Phytopathology 41: 37-42.
  3. Blancard D. 2012. A Color Handbook Tomato Diseases, Identification, Biology and Control. 2nd. Academic press, USA. 688 pp.
  4. Borkar S.G., and Yumlembam R.A. 2016. Bacterial Diseases of Crop Plants. 1st CRC Press, Boca Raton, USA. 594 pp.
  5. Campbell C.L., and Modden L.V. 1990. Introduction to Plant Disease Epidemiology. John Willeyand Sons, New York, USA. 532 pp.
  6. Canzoniere P., Francesconi S., Giovando S., and Balestra G.M. 2021. Antibacterial activity of tannins towards Pseudomonas syringae tomato, and their potential as biostimulants on tomato plants. Phytopathologia Mediterranea 60: 23-36.
  7. Caruso A., Licciardello G., La Rosa R., Catara V., and Bella P. 2016. Mixed infection of Pectobacterium carotovorum carotovorum and P. carotovorum subsp. brasiliensis in tomato stem rot in Italy. Journal of Plant Pathology 98: 3. doi: 10.4454/JPP.V98I3.062.
  8. de Mendiburu F., and de Mendiburu M.F. 2019. Package ‘agricolae’. R Package, Version, 1-
  9. 2021. The Agricultural Production Domain. Available at: http://www.fao.org/faostat/en/#data/QC [visited 27 August 2021].
  10. Fletcher J. 1992. Compendium of Tomato Disease. APS Press, St. Paul, Minnesota, USA, 73 pp.
  11. Gullino M.L., Gilardi G., Sanna M., and Garibaldi A. 2009. Epidemiology of Pseudomonas syringae syringae on tomato. Phytoparasitica 37: 461-466.
  12. Hibberd A.M., Heaton J.B., Finally G.P., and Dullahide S.R. 1992. A greenhouse method for selecting tomato seedlings resistant to bacterial canker. Plant Disease 76: 1004-
  13. Kozik E.U. 2002. Studies on resistance to bacterial speck (Pseudomonas syringae tomato) in tomato cv. Ontario 7710. Plant Breeding 121: 526-530.
  14. Le K.D., Kim J., Yu N.H., Kim B., Lee C.W., and Kim J.C. 2020. Biological control of tomato bacterial wilt, kimchi cabbage soft rot, and red pepper bacterial leaf spot using Paenibacillus elgii JCK-5075. Frontiers in Plant Science 11: 775. org/10.3389/fpls.2020.00775.
  15. Louws F.J. 2018. Evaluation of biopesticides and biorationals on bacterial canker and bacterial spot disease levels in tomato fresh-market production in North Carolina. Acta Horticalture 1207: 241-248
  16. Najeeb S., Ahmad M., Khan R.A.A., Naz I., Ali A., and Alam S.S. 2019. Management of bacterial wilt in tomato using dried powder of Withania coagulan (L) Dunal. Australasian Plant Pathology 48: 183-192
  17. Okabe N. 1933. Bacterial disease of plants occurring in Formosa. II. Bacterial leaf spot of tomato. Journal of the Society of Tropical Agriculture 5: 25-36.
  18. Preston G.M. 2000. Pseudomonas syringae tomato: the right pathogen, of the right plant, at the right time. Molecular Plant Pathology 1: 263-275.
  19. Quaglia M., Bocchini M., Orfei B., D’Amato R., Famiani F., Moretti C., and Buonaurio R. 2021. Zinc phosphate protects tomato plants against Pseudomonas syringae tomato. Journal of Plant Diseases and Protection 128: 989-998.
  20. Rossi V. 1999. Effect of host resistance and fungicide sprays against Cercospora leaf spot indifferent sugar beet-growing areas of the Mediterranean basin. Phytopathologia Mediterranea 38: 465-470.
  21. Saimin J., Soetjipto, and Hendarto H. 2020. Antioxidant effects of tomato juice on reducing serum malondialdehyde levels in menopausal rats. Pakistan Journal of Nutrition 19: 362-366.
  22. Shahriari D., and Rahimian H. 1995. Tomato bacterial speck in Varamin. p 168. In: Proceedings of the 12th Iranian Plant Protection Congress. August 27-September 1. Karaj, Iran. (In Persian with English abstract)
  23. Shao X., Tan M., Xie Y., Yao C., Wang T., Huang H., Zhang Y., Ding Y., Liu J., Han L., Hua C., Wang X., and Deng X. 2021. Integrated regulatory network in Pseudomonas syringae reveals dynamics of virulence. Cell Reports 34: doi: 10.1016/j.celrep.2021.108920.
  24. Thomas J.E., Geering A.D.W., and Maynard G. 2018. Detection of Candidatus Liberibacter solanacearum in tomato on Norfolk Island, Australia. Australasian Plant Disease Notes 13: 1.
  25. Turgut A., and Basim H. 2013. Sensitivity of tomato (Solanum lycopersicum) cultivars from Turkey to bacterial speck (Pseudomonas syringae tomato). African Journal of Biotechnology 12: 1793-1801.
  26. Yang W.E.N.C.A.I., and Francis D.M. 2007. Genetics and Breeding for Resistance to Bacterial Diseases in Tomato: Prospects for Marker-Assisted Selection. Genetic Improvement of Solanaceous Crops. Volume 2: tomato. Eds K. Razdan and A.K. Mattoo (eds.) Science Publishers Inc, New Hampshire. pp. 379-419.
  27. Yunis H., Bashan Y., Okon Y., and Heniis Y. 1980. Two sources of resistance to bacterial speck of tomato caused by Pseudomonas tomato. Plant Disease 64: 851-852.
CAPTCHA Image