پی جویی توده های علف های هرز خردل وحشی (Sinapis arvensis L.) و شلمی (Rapistrum rugosum L.) مقاوم به علف کش تری بنورون متیل در مزارع گندم استان گلستان و معرفی روشی نوین برای تشخیص جمعیت های مقاوم در این گونه های هرز

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشگاه علوم کشاورزی و منابع طبیعی گرگان

2 دانشگاه کوردوبا، اسپانیا

3 دانشگاه گلستان

چکیده

تحقیق حاضر جهت تعیین درجه مقاومت و پیدا کردن روشی سریع و مقرون به صرفه جهت تشخیص مقاومت در دو علف هرز خردل وحشی (Sinapis arvensis L.) و شلمی (Rapistrum rugosum L.) مقاوم به علف کش تری بنورون متیل6 (گرانستار) از خانواده بازدارنده های آنزیم استو هیدروکسی اسید سینتاز7 (AHAS) یا استولاکتات سنتاز8(ALS) شکل گرفت. در ابتدا جمع آوری بذور مشکوک به مقاومت از مزارع گندم استان گلستان که به طور متوالی تحت سمپاشی با این سم قرار گرفته اند و گزارش هایی مبنی بر بروز مقاومت وجود دارد، انجام گردید. همچنین بذور توده-های حساس نیز از مناطقی که سابقه سمپاشی نداشتند، جمع آوری شد. جهت غربال اولیه توده های جمع آوری شده، گیاهچه های حاصل از آنها در مرحله 3 تا 4 برگی، مورد سمپاشی با دز توصیه شده علف کش قرار گرفتند. توده هایی که پس از گذشت چهار هفته زنده مانده و حداقل 80 درصد زیست توده خود را نسبت به شاهد سمپاشی نشده، حفظ کردند به عنوان توده مقاوم شناخته شدند. از بین روش های موجود برای تعیین سطح مقاومت جمعیت های مقاوم، روش سنجش پاسخ گیاه کامل به دزهای مختلف علف کش تری بنورون متیل و زیست سنجی گیاهچه در پتری دیش، مورد استفاده قرار گرفت. در این دو روش دز و یا غلظتی از علف کش که باعث 50 درصد بازدارندگی می شود (GR50) از منحنی های رگرسیونی غیرخطی لگ لجستیک9 به دست آمد. درجه مقاومت به دست آمده از آزمایش های گلخانه ای برای توده های مقاوم خردل وحشی بین 22/2 تا 77/16 و برای شلمی حدود 5/2 تا 59/6 بود. با وجودی که درجه مقاومت در روش زیست سنجی گیاهچه در پتری دیش کمی بالاتر و به ترتیب برای خردل وحشی و شلمی بین 30/2 تا 47/17 و 86/2 تا 56/9 بود اما، همبستگی بالایی بین درجات مقاومت به دست آمده از روش گلخانه ای و آزمایشگاهی مشاهده شد (90/0 برای خردل وحشی و 83/0 برای شلمی). نتایج آزمون سریع هم راستای نتایج آزمایش های گلخانه ای بود که نشان می دهد آزمون سریع می تواند به عنوان روشی سریع و ارزان برای تشخیص مقاومت به علف کش تری بنورون متیل در خردل وحشی و شلمی مورد استفاده قرار گیرد.

کلیدواژه‌ها


عنوان مقاله [English]

Tracing Resistance to Tribenuron-Methyl in Populations of Wild Mustard (Sinapis arvensis L.) and Turnipweed (Rapistrum rugosum L.) collected from Wheat Fields of Golestan Province and Introduction a New Method in order to Detect their Resistant Population

نویسندگان [English]

  • Zahra Hatami Moghaddam 1
  • Javid Gherekhloo 1
  • Rafael De Prado 2
  • Hamid Reza Sadeghipour 3
1 Agricultural Sciences and Natural Resources Gorgan University
2 University of Córdoba- Spain
3 University of Golestan
چکیده [English]

Introduction: Tribenuron methyl, an ALS inhibiting herbicide, labeled for post-emergence use in wheat and barley fields and is extremely effective on broadleaf weeds. This herbicide plays a critical role in post-emergence weed management options for cereals especially in Golestan province in Iran. Recently, failures to control wild mustard (Sinapis arvensis L.) and turnipweed (Rapistrum rugosum L.) with recommended dose of tribenuron methyl applications have been reported for wheat fields (6 and 20). It motivated us to trace resistant populations and evaluate their degree of resistance and find a quick and cost-effective method to identify resistant populations in wild mustard and turnipweed .
Materials and Methods: At first, seeds were collected from wheat fields in Golestan province. These fields had been treated annually with tribenuron-methyl for more than 5 years, so wild mustard and turnipweed control had become erratic with this herbicide in recent years. Seeds were also collected from a site that had not been applied to any herbicide. This biotype was considered as tribenuron-methyl-susceptible (S). Plants obtained from the seeds collected were screened with recommended dose of tribenuron-methyl to indicate of resistant populations (R). Then greenhouse and laboratory experiments were conducted to investigate resistance level to tribenuron-methyl. The broken dormancy seeds were sown in suitable pots and were put in the greenhouse under natural sunlight. Plants with three to four true leaves were sprayed by different tribenuron-methyl rates based on a logarithmic scale. Above-ground biomass from the plants in each pot was harvested 4 weeks after treatment. Dry biomass data were expressed as a percentage of the untreated control within each biotype. For seed bioassay, different solution of teribenuron methyl was prepared with technical and commercial herbicide. A non-treated control was included and in these petri dishes added water instead of spraying herbicide. Seven days after trial initiation, shoot and root lengths were measured from the crown to the tip of the root or shoot to discriminate between R and S biotypes. Analyses of dose-response data in whole plant and seed bioassay were performed using the R software by fitting the data to a nonlinear log-logistic regression model.
Results and Discussions: In our study, the responses of the collected wild mustard and turnipweed populations after treated with the field rate of Granstar (tribenuron-methyl) confirmed that some of these populations are resistant to this herbicide. In these experiment 14 and 10 resistant biotypes (R) for wild mustard and turnipweed respectively according to results of screening test, and one susceptible biotype (S) were used for investigation of R biotypes response to increase concentration of herbicide. The concentration of tribenuron-methyl led to 50% inhibition shoot growth in control treatment was 9.93 and 10.90 gr a.i ha-1, whereas for R biotypes it was 2.6 to 6.6 and 2.2 to 16.8 fold more resistant relative to the S biotype for wild mustard and turnipweed respectively. Quick resistance test in petri dishes showed ability of this method for easy and reliable assessment of resistance in these plants. The results obtained by using commercial herbicide as well as shoot length data were not suitable for bio-evaluation and there were extreme variability when assayed, resistance would be more reliably detected using assays conducted on seeds of suspected R populations by root length measurement. Response of resistant populations to increasing concentrations of tribenuron-methyl herbicide were quite different from that of control treatment. Assays to determine the dose required to reduce root lenght by 50% indicated a resistance factor (RF) of 17.47 to 2.30 for wild mustard and 9.56 to 2.76 for turnipweed. On the other hand, the RF using whole plant dose–response assays were lower than petri dish assay. There is high correlation between the degree of resistance to obtained results from greenhouse and laboratory (90% and 83% wild mustard and turnipweed respectively).
Conclusion: The continuous advent of resistant weeds is a concern. Wheat is an important crop in Iran, which is mainly grown in monoculture and, only the used methods to remove the weeds is applying the herbicides especially in Golestan province. Probably the lack of crop and herbicide rotations are the main reasons of resistance to tribenuron-methyl in this regions. Having a rapid and reliable seedling bioassay is a useful tool to plan the best herbicide strategy for using in the field. Petri dish assay can be more convenient, potentially cheaper and give quicker results than pot tests but are not suitable for all weeds and herbicides. For this case, this test was done in turnipweed and wild mustard successfully.

کلیدواژه‌ها [English]

  • ALS inhibitor
  • Dose-response experiment
  • Petri dish assay
  • Tribenuron-methyl
1- BanaKashani F., Znad E., and Alizareh H.M. 2007. Resistance of wild oat (Avena ludoviciana) biotypes to clodinafop-propargil herbicide. Applied Entomology and Phytopathology, 74(2): 127-150. (in Persian).
2- Beckie H.J., Friesen L.F., Nawolsky K.M., and Morrison I.N. 1990. A rapid bioassay to detect trifluralin-resistant green foxtail (Setaria viridis). Weed Technol. 4: 505–508.
3- Beckie H.J., Heap I., Smeda R., and Hall L. 2000. Screening for herbicide resistance in weeds. Weed Science, 14: 428-445.
4- Burgos N.R., Tranel P.J., Streibig J.C., Davis V.M., Shaner D., Norsworthy J.K., and Ritz C. 2013. Review: Confirmation of resistance to herbicides and evaluation of resistance levels. Weed Science, 61: 4–20.
5- Burke I.C., Thomas W.E., Burton J.D., Spears J.F., and Wilcut J.W. 2006. A seedling assay to screen aryloxyphenoxypropionic acid and cyclohexanedione resistance in johnsongrass (Sorghum halepense). Weed Technology, 20: 950-955.
6- Derakhshan A., and Gherekhloo J. 2012. Tribenuron-Methyl resistance turnipweed (Rapistrum rugosum) from Iran. The 6th international weed science congress. Hangzhou, China, 17-22 June, 2012.
7- Elahifard E., Rashed Mohassel M.H., Zand E., and Nassirimahllati M. 2008. The investigation of the resistance against fenoxaprop – P – ethyl herbicide in littleseed canarygrass (Phalaris minor). Journal of Agricultural Science and Natural Resource, 14(6): 53-62. (in Persian with English abstract).
8- Ghanizadeh H., Harrington K.C., James T.K., and Woolley D.J. 2015. A quick test using seeds for detecting dicamba resistance in fathen (Chenopodium album). Australian Journal of Crop Science, 9(4): 337-343.
9- Gherekhloo J., Rashed Mohassel M.H., Nassiri Mahalati M., Zand E., Ghanbari A., Osuna M.D., and De Prado R. 2008. Seed bioassay and ACCase enzyme assay to study the resistance of Phalaris minor to aryloxyphenoxy-propionate (APP) inhibitors. Environmental, 4: 43-52.
10- Gherekhloo J., Rashed Mohassel M.H., Nassiri Mahallati M., Zand E., Ghanbari A., and De Prado R. 2008. Greenhouse assay to investigate resistance of little seed canary grass (Phalaris minor) to aryloxyphenoxy propionate herbicides. Iranian Journal of Field Crops Research, 6(2): 353-361. (in Persian with English abstract).
11- Heap I. 2015. International survey of herbicide resistance weeds. Onlin Internet. 04 September 2015. Availal. www. weedscience. com.
12- [HRAC] Herbicide Resistance Action Committee. 2013. Herbicide resistance testing facilities. http://www.hracglobal.com/Publications/. Accessed: May 04, 2015.
13- Huang S.X. 2004. Studies on biology and resistance of Alopecurus aequalis Sobol. to acetyl-coenzyme A carboxylase inhibitors. M.A. thesis. Nanjing, China: Nanjing Agricultural University.
14- InKuk Y., Burgos N.R., and Talbert R.E. 2000. Cross and multiple resistance of diclofop-resistant Lolium spp. Weed Science, 48: 412–419.
15- InKuk Y., Jung H., Kwon O.D., Lee D.J., Burgos N.R., and Guh J.O. 2003. Rapid diagnosis of resistance to sulfonylurea herbicides in monochoria (Monochoria vaginalis). Weed Science, 51: 305–311.
16- Kochaki A.R., and Khajeh Hosseini M. 2008. Modern Agronomi. Jahad Daneshghahi Press, Mashhad. (in Persian).
17- Kraehner H., Schulz A., Laber B. 2007. Where are the new herbicides modes of action. FarmTechnology 2007 proceedings, 88-97.
18- Moss S.R. 1995. Techniques for determining herbicide resistance. Brighton Crop Protection conference. Weeds, 2: 547-556.
19- Murry B.G., Frisen L.F., Beaulieu k.j., and Morrison I.N. 1996. A seed bioassay to indentify acetyl-coA carboxylase inhibitor resistant wild oat (Avena fatua) populations. Weed Technology, 10: 85-89.
20- Najari N. 2013. Investigation of resistant weeds to ACCase and ALS inhibiting herbicides in wheat fields of Agh'ghala and preparing their map. MSc. thesis, Agricultural Sciences and Natural Resources of Gorgan University. (in Persian).
21- Partowi M., Zand E., Alizadeh H.M., and Makenali A. 2006. Investigating resistance of Chenopodium murale to cloridazon and desmedipham in Khouzestan suger beet (Beta vulgaris) fields. 1th Internatinal Weed Science Congress, Iran-Tehran, 496-499. (in Persian with English abstract).
22- Perez A., Kogan M. 2003. Glyphosate-resistant Lolium multiflorum in Chilean orchards. Weed Research, 43: 12-19.
23- Perez-Jones A., Park K.W. Polge N. Colquhoun J. and Mallory-Smith C.A. 2007. Investigating the mechanisms of glyphosate resistance in Lolium multiflorum. Plant Biology, 226, 395–404.
24- Polit J.T., Praczyk T., Pernak J., Sobiech L., Jakubiak E., and Skrzypczak G. 2014. Inhibition of germination and early growth of rape seed (Brassica napus L.) by MCPA in anionic and ester form. Acta Physiology Plant, 36: 699-711.
25- Preston C., Belles D.S., Westra P.H., Nissen S.J., and Ward S.M. 2009. Inheritance of resistance to the auxinic herbicide dicamba in kochia (Kochia scoparia). Weed Science, 57: 43-47.
26- Rahman A., James T., and Trolove M. 2014. Characteristics and control of dicamba-resistant common lambsquarters (Chenopodium album). Weed Biology Management, 14: 88-98.
27- Rastgoo M., Rashed Mohassel M.H., Zand E., and Nassiri Mahallati M. 2006. Resistance of winter wild oat (Avena ludoviciana Durieu.) to aryloxyphenoxy propionate herbicides in wheat fields of Khuzestan province: first screening test. Iranian Weed Science, 2: 96-104.
28- Ritz C. 2010. Toward a unified approach to dose–response modeling in ecotoxicology. Environmental Toxicology and Chemistry, 29:220–229.
29- Rosario J.M., Cruz-Hipolito H., Smeda R.J., and De Prado R. 2011. White mustard (Sinapis alba L.) resistance to ALS-inhibiting herbicides and alternative herbicides for control in Spain. European Journal of Agronomy, 35: 57–62.
30- Ruegg W.T., Quadranti M. Zoschke A. 2007. Herbicide research and development: challenges and opporatunities. Weed Research, 47: 271-275.
31- Sasanfar H.R., Zand E., Baghestani M.E., and MirHadi M.J. 2009. Investigation of resistance Avena ludoviciana populations to clodinafop-propargil. Journal of Environmental Science, 2: 22-25. (in Persian).
32- Sun B.Y. 1996. Studies on growth and decline of Alopecurus weed populations in wheats and identification of chlortoluron resistance. Ph.D dissertation. Nanjing, China: Nanjing Agricultural University.
33- Tal A., Kotula-Sykna E. and Rubin B. 2000. Seed bioassay to detect grass weeds resistance to acetyl coA carboxylase inhibiting herbicides. Crop Protection, 19: 467-472.
34- Wei Y., Zheng H., and Hall J.C. 2000. Role of auxinic herbicide-induced ethylene on hypocotyl elongation and root/hypocotyl radial expansion. Pest Management Science, 56: 377-387.
35- Yang C.H., Dong L.Y., Li J., and Moss S.R. 2007. Identification of Japanese foxtail (Alopecurus japonicus) resistant to haloxyfop using three different assay techniques. Weed Science, 55: 537–540.
36- Xu X., Wang G.Q., Chen S.L., Fan C.Q., and Li B.H. 2010. Confirmation of flixweed (Descurainia sophia) resistance to tribenuron-methyl using three different assay methods. Weed Science, 58: 56–60.
37- Zand E., Baghestani M.E. 2000. Resistance to herbicides in weeds. Jahad Daneshgahi Press, Mashhad. (in Persian).
38- Zand E., Baghestani M.E., Bitarafan M., and Shimi P. 2008. Guide registered herbicides in Iran (with approach of weed resistance management to herbicides). Jahad Daneshgahi Press, Mashhad. (in Persian).
39- Zand E., Baghestani M.E., Nezam Abadi N., and Shimi P. 2007. Main Herbicides and Weeds in Iran. Nashre Daneshgahi Press. (in Persian).
40- Zand E., Benakashani F., Baghestani M.A. Soufizadeh S., Maknali A. Minbashi M., Soufizadeh S., and Deihimfard R. 2006. Investigating the distribution of clodinafop-propargyl resistant wild oat (Avena ludoviciana) populations in South Western Iran. Environmental Science, 4: 85-92.