مدل‌سازی زمان جوانه‌زنی علف‌هرز وایه گل‌سفید (Ammi majus L.) در واکنش به دما

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشگاه علوم کشاورزی و منابع طبیعی خوزستان

2 علوم کشاورزی و منابع طبیعی خوزستان

3 علوم کشاورزی و منابع طبیعی گرگان

چکیده

مدل‌های مبتنی بر جمعیت، ابزارهای مفیدی برای توصیف رفتار جوانه‌زنی بذرها در پاسخ به دما هستند. در این مطالعه، دقت پیش‌بینی رهیافت‌های مختلف زمان‌گرمایی جهت مدل‌سازی دوره‌های زمانی پیشرفت جوانه‌زنی علف‌هرز وایه گل‌سفید در واکنش به دما ارزیابی شد. آزمون جوانه‌زنی در هشت دمای ثابت 8، 12، 16، 20، 24، 28، 32 و 36 درجه سانتی‌گراد انجام شد. مقادیر RMSE و AIC نشان داد که وقتی Tb (دمای پایه) و θTm (نیاز زمان‌گرمایی برای تکمیل جوانه‌زنی در دماهای بیشتر از بهینه (To)) برای کل جمعیت بذری ثابت بود و توزیع نرمال برای توصیف تنوع θT(g) (نیاز زمان‌گرمایی برای تکمیل جوانه‌زنی هر کسر بذری معین در دماهای بین Tb و To) و Tm(g) (دمای بیشینه (Tm) برای بازدارندگی گرمایی جوانه‌زنی کسر معین 1-g در دماهای بین To و Tm) بکار رفت، مدل برازش دقیق‌تری به داده‌ها ارائه داد. بر اساس این رویکرد، Tb و θTm برای این گیاه به‌ترتیب معادل 06/1 درجه سانتی‌گراد و 41/1155 درجه سانتی‌گراد ساعت برآورد شد. مقادیر θT و Tm برای کسر 50 درصد (θT(50) و Tm(50)) به‌ترتیب معادل 62/2708 درجه سانتی‌گراد ساعت و 55/34 درجه سانتی‌گراد تعیین شد. مقدار To برای کسرهای مختلف جوانه‌زنی (To(g)) ثابت نبود و برای کسر 50 درصد (To(50)) معادل 51/24 درجه سانتی‌گراد به دست آمد. پارامترهای برآورد شده در این مطالعه می‌تواند برای ساخت مدل‌های پیش‌بینی کننده الگوی رویش علف‌هرز وایه گل‌سفید در مزرعه استفاده شود.

کلیدواژه‌ها


عنوان مقاله [English]

Modeling the Germination Timing of Bishop's Weed (Ammi majus L.) in Response to Temperature

نویسندگان [English]

  • M.R. Moradi-Telavat 1
  • ُSeyed atollah Siadat 2
  • A. Derakhshan 3
  • S. Safarkhanzadeh 1
1 Agricultural Sciences and Natural Resources University of Khuzestan
3 Agricultural Sciences and Natural Resources University of Khuzestan, respectively.
چکیده [English]

Introduction: After moisture, temperature is the main driving force affecting seed germination. Population-based models are useful tools for describing and predicting germination in relation to time and temperature. These models estimate the thermal thresholds for seed germination, taking into account both the speed and final percentage of germination in different temperature regimes. The population-based approach has been widely used to model the thermal response of various plant processes such as germination and dormancy of seeds as well as seedling emergence in the field. However, the assumptions of this approach on the germination of seeds of some plant species, especially weeds, are not always correct. Therefore, in this research, the accuracy of prediction of different thermal-time approaches for modeling the germination time courses of bishop's weed (Ammi majus L.) in response to constant temperature regimes was evaluated. Bishop's weed was selected because there are no reports regarding the germination response thresholds of this species to temperature in the scientific resources.
Materials and Methods: Experiment was conducted at the Seed Technology Laboratory of Agricultural and Natural Resources University of Khuzestan in November 2017. In this study, germination response of bishop's weed was evaluated at different constant temperatures. The seeds of bishop's weed were collected from the margins of several wheat fields at the time of their natural dispersal in June 2014. The seeds of bishop's weed were incubated in the dark using incubators with controlled environments at eight constant temperatures of 8, 12, 16, 20, 24, 28, 32 and 36 ºC with a range of ±0.2 ºC. These temperature regimes cover both the sub- and supra-optimal temperature ranges. The trial was performed in a completely randomized design with four replications. The germinated seeds (criterion, radicle protrusion of > 2 mm) were counted and removed at frequent time intervals. The event-time approach (package drc in R environment software) was applied to determine the time taken for cumulative germination to reach subpopulation percentiles of 20, 50 and 80% of maximum in each temperature regimes. Experimentally obtained cumulative-germination curves were used to perform a non-linear regression procedure to assess the relative accuracy of different thermal-germination models in predicting germination response under constant incubation temperatures. Assessment of goodness-of-fit was performed by the Akaike information criterion (AIC).
Results and Discussion: The values of RMSE and AIC showed that the model had better and more accurate fit to bishop's weed germination data when the Tb (base temperature) and θTm (thermal-time required to complete germination at temperatures greater than optimal (To)) were assumed to be constant for the whole seed population, and Normal distribution was used to describe the variation in θT(g) (thermal-time required to complete the germination of each given seed fraction at a temperatures between the Tb and To) and Tm(g) (maximum temperature (Tm) for seed thermo-inhibition of given fraction g at temperatures between the To and Tm). Based on this approach, the Tb and θTm for this plant were estimated to be 1.06 ºC and 1155.41 ºC h, respectively. The values of θT and Tm for seed fraction of 50% (θT(50) and Tm(50)) were determined as 2708.62 ºC h and 34.55 ºC, respectively. The value of To was not constant for different germination fractions (To(g)), and for fraction 50% (To(50)) was determined to be 24.51 ºC. Thermal-time analysis is considered by many researchers to have physiologically and ecologically relevant parameters and, in its standard form, provides several useful indices of seed germination behavior in response to temperature. Despite its popularity, the generality of its assumptions has not been examined systematically. If these assumptions do not hold, at least approximately, in a particular situation, misleading interpretations can easily arise. The thermal-germination model presented here explained some of the adaptive characteristics of the germination response of bishop's weed to ambient temperature. Seed thermo-inhibition in this weed species occurred at temperatures beyond 25.43 ºC. In other words, the seeds of bishop's weed do not germinate when temperature will exceed this limit and thus remaining capable of germinating until the environmental conditions change.
Conclusion: In summary, in this study, the thermal thresholds for seed germination of bishop's weed were identified. Our results showed that the Tb was constant for the whole seed population. The thermal-germination model described here gave an acceptable explanation of the observed seed germination patterns. Almost all the concepts and mathematical models described in this study can be applied to modeling seedling emergence in the field.

کلیدواژه‌ها [English]

  • Base temperature
  • Cumulative distribution function
  • Inverse cumulative distribution
  • Maximum temperature
  • Normal Distribution
1- Bewley J.D., Bradford K.J., Hilhorst H.W.M., and Nonogaki H. 2013. Seeds: Physiology of Development, Germination and Dormancy. Springer, New York.
2- Bradford K.J. 2002. Applications of hydrothermal time to quantifying and modeling seed germination and dormancy. Weed Science 50: 248–260.
3- Burnham K.P., and Anderson D.R. 2002. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. Springer, New York.
4- Chantre G.R., Batlla D., Sabbatini M.R., and Orioli G. 2009. Germination parameterization and development of an after-ripening thermal-time model for primary dormancy release of Lithospermum arvense seeds. Annals of Botany 103: 1291–1301.
5- Derakhshan A., Bakhshandeh A., Siadat S.A., Moradi-Telavat M.R., and Andarzian S.B. 2018a. Application of thermal-time concept to modeling oilseed rape (Brassica napus L.) seed germination response to temperature. Iranian Journal of Field Crops Research 16: 153–164. (In Persian with English abstract)
6- Derakhshan A., Bakhshandeh A., Siadat S.A., Moradi-Telavat M.R., and Andarzian S.B. 2018b. Quantification of thermoinhibition response of seed germination in different oilseed rape cultivars. Environmental Stresses in Crop Sciences 11: 459–469. (In Persian with English abstract)
7- Derakhshan A., Bakhshandeh A., Siadat S.A., Moradi-Telavat M.R., and Andarzian S.B. 2018c. Comparison of probability distribution functions in thermal-time models for modeling of spring oilseed rape germination to temperature. Iranian Journal of Field Crop Science 41: 81–98. (In Persian with English abstract)
8- Derakhshan A., Bakhshandeh A., Siadat S.A., Moradi-Telavat M.R., and Andarzian S.B. 2018d. Quantifying the germination response of spring canola (Brassica napus L.) to temperature. Industrial Crops and Products 122: 195–201.
9- Derakhshan A., and Gherekhloo J. 2014. Study on some ecological aspects of Cutleaf groundcherry (Physalis angulata L.) seed germination and dormancy. Journal of Plant Protection 28: 416–424. (In Persian with English abstract)
10- Derakhshan A., Gherekhloo J., Ribas A.V., and Rafael D.P. 2014. Quantitative description of the germination of Littleseed Canarygrass (Phalaris minor) in response to temperature. Weed Science 62: 250–257.
11- Derakhshan A., Siadat S.A., Bakhshandeh A., Moradi-Telavat M.R., and Andarzian S.B. 2019. Estimation of thermal thresholds for seedling emergence of spring canola in the field. Iranian Journal of Field Crop Science 50: 59–69.
12- Forcella F., Benech Arnold R.L., Sanchez R., and Ghersa C.M. 2000. Modeling seedling emergence. Field Crops Research 67: 123–139.
13- Ghaderi-Far F., Soltani A., and Sadeghipour H.R. 2009. Evaluation of nonlinear regression models in quantifying germination rate of medicinal pumpkin (Cucurbita pepo L. subsp. Pepo. Convar. Pepo var. styriaca Greb), borago (Borago officinalis L.) and black cumin (Nigella sativa L.) to temperature. Journal of Plant Production 16: 1–19. (In Persian with English abstract)
14- Hardegree S.P. 2006. Predicting germination response to temperature. III. Model validation under field-variable temperature conditions. Annals of Botany 98: 827–834.
15- Kamkar B., Jami Al-Alahmadi M., Mahdavi-Damghani A., and Villalobos F.J. 2012. Quantification of the cardinal temperatures and thermal time requirement of opium poppy (Papaver somniferum L.) seeds to germinate using non-linear regression models. Industrial Crops and Products 35: 192–198.
16- Mesgaran M.B., Onofri A., Rahimian Mashhadi H.R., and Cousens R.D. 2017. Water availability shifts the optimal temperatures for seed germination: A modelling approach. Ecological Modelling 351: 87–95.
17- Mesgaran M.B., Rahimian Mashhadi H.R., Alizadeh H., Ohadi S., and Zare A. 2014. Modeling the germination responses of wild barley (Hordeum spontaneum) and littleseed cannary grass (Phalaris minor) to temperature. Iranian Journal of Weed Science 9: 105–118. (In Persian with English abstract)
18- Nascimento W.M., Huber D.J., and Cantliffe D.J. 2013. Carrot seed germination and respiration at high temperature in response to seed maturity and priming. Seed Science and Technology 41: 164–169.
19- Nemati F., Eslami Jadidi B., and Talebi darabi M. 2013. Cytotoxicity effects of bishops flower (Ammi majus) extract on the cancer cell lines Hela and MCF-7. journal of Animal Biology 5: 59–67.
20- Onofri A., Benincasa P., Mesgaran M.B., and Ritz C. 2018. Hydrothermal-time-to-event models for seed germination. European Journal of Agronomy 101: 129–139.
21- Soltani A., Robertson M.J., Torabi B., Yousefi-Daz M., and Sarparast R. 2006. Modelling seedling emergence in chickpea as influenced by temperature and sowing depth. Agricultural and Forest Meteorology 138: 156–167.
22- Zhang H., McGill C.R., Irving L.J., Kemp P.D., and Zhou D. 2012. A modified thermal time model to predict germination rate of ryegrass and tall fescue at constant temperatures. Crop Science 53: 240–249.
23- Wang R., Bai Y., and Tanino K. 2004. Effect of seed size and sub-zero imbibitions temperature on the thermal time model of winterfat (Eurotia lanata (Pursh) Moq.). Environmental and Experimental Botany 51: 183–197.
24- Watt M., and Bloomberg M. 2012. Key features of the seed germination response to high temperatures. New Phytologist 196: 332–336.
25- Watt M.S., Xu V., and Bloomberg M. 2010. Development of a hydrothermal time seed germination model which uses the Weibull distribution to describe base water potential. Ecological Modelling 221: 1267–1272.
CAPTCHA Image