Effect of Contaminant Lead on Arthrobotrys oligospora Growth, Development, Trap Production, Efficiency and Protease Secretion

Document Type : Research Article


College of Aboureyhan, University of Tehran


.Lead concentration has recently increased in country side fields and industrial regions. In the research, the effect of different concentrations of lead acetate on Arthrobotrys oligospora growth, sporulation, trap formation and efficiency and also the activity of the extracellular protease of the fungus investigated.
A. oligospora is one of the most important biocontrol agents of plant parasitic nematodes. Results showed that lead acetate in concentration of 150-500 mg l-1 inhibition the fungal growth more than 80 percent and concentration of 500 mg l-1 had the maximum level of inhibition. Fungal sporulation in concentration of 150
mg l-1 and more was significantly reduced in compared to control. Trap formation and efficiency in concentration of 200 mg l-1 and more was reduced, but they increased in 100 mg l-1. Probably low concentration of lead induces trap formation of the fungus. Activity of extracellular protease was also significantly reduced in all concentration tested (100-300 mg l-1), in comparison to control. According to the results, the application of the fungus in biocontrol management of plant parasitic nematodes should be performed under consideration of different environmental factors as well as pollution and concentration of lead in the soil.


- امینی م.، افیونی م.، و خادمی ح. 1385. مدل سازی توازن جرمی عناصر کادمیوم و سرب در زمین های زراعی منطقه اصفهان. نشریه علوم و فنون کشاورزی و منابع طبیعی 10: 89-77.
2- نصری فرد م.، صیاد غ.، جعفرنژادی ع.، و افیونی م. 1392. ارزیابی غلظت سرب در خاک و بذر مزارع تحت کشت گندم و تأثیر برخی ویژگی-های خاک بر آن (مطالعه موردی: استان خوزستان). نشریه علوم و فنون کشاورزی و منابع طبیعی، علوم آب و خاک 17: 123-113.
3- گلچین ا. 1382. فعالیت های صنعتی و آلودگی خاک های کشاورزی به فلزات سنگین. هشتمین کنگره علوم خاک ایران، رشت.
4- Alloway B. 2013. Heavy Metals in Soils. Springer Netherlands.
5- Bern: 1998. FOEFL (Swiss Federal Office of Environment, Forest and Landscape): Commentary on the Ordinance Relating to Pollutants in Soils.
6- Cayrol J.C., Djian C., and Pijarowski L. 1989. Study of the nematicidal properties of the culture filtrate of the nematophagous fungus Paecilomyces lilacinus. Revue de Nematologie, 12: 331-336.
7- Dogan-Saglamtimur N., and Kumbur H. 2002. Toxic elements in marine products and human hair samples in Mersin, Turkey. Bulletin of Environmental Contamination and Toxicology, 69: 15-21.
8- Etebarian H.R., Sholberg P.L., Eastwell K.C., and Sayler R.J. 2005. Biological control of apple blue mold with Pseudomonas fluorescens. Canadian Journal of Microbiology, 51:591-598.
9- Hussey R.S., and Barker K.R. 1973. A comparison of methods of collecting inocula of Meloidogyne spp., including a new technique. Plant Disease Reporter, 75:1025–1028.
10- Jepson S.B. 1987. Identification of Root-Knot Nematodes (Meloidogyne species). Cambrian News Ltd.
11- Konopka A., Zakharova T., Bischoff M., Oliver L., Nakatsu C., and Turco R. 1999. Microbial biomass and activity in lead-contaminated soil. Applied and Environmental Microbiology, 65: 2256-2259.
12- Knight B.P., McGrath S.P., and Chaudri A.M. 1997. Biomass carbon measurements and substrate utilization patterns of microbial populations from soils amended with cadmium, copper, or zinc. Applied and Environmental Microbiology, 63:39-43.
13- Kumari J.A., and Panda T. 1992. Studies on critical analysis of factors influencing improved production of protoplasts from Trichoderma reesei mycelium. Enzyme and Microbial Technology, 14:241-248.
14- Liu J., Li K., Xu J., Zhang Z., Ma T., Lu X., Yang J., and Zhu Q. 2003. Lead toxicity, uptake, and translocation in different rice cultivars. Plant Science, 165:793-802.
15- Majer B.J., Tscherko D., Paschke A., Wennrich R., Kundi M., Kandeler E., and Knasmüller S. 2002. Effects of heavy metal contamination of soils on micronucleus induction in Tradescantia and on microbial enzyme activities: a comparative investigation. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 515:111-124.
16- Mo M.H., Chen W.M., Su H.Y., Zhang K.Q., Duan C.Q., and He D.M. 2006. Heavy metal tolerance of nematode-trapping fungi in lead-polluted soils. Applied Soil Ecology, 31:11-19.
17- Nies D.H. 1999. Microbial heavy-metal resistance. Applied Microbiology and Biotechnology, 51:730-750.
18- Nordbring-Hertz B. 2004. Morphogenesis in the nematode-trapping fungus Arthrobotrys oligospora an extensive plasticity of infection structures. Mycologist, 18:125-133.
19- Patra M., Bhowmik N., Bandopadhyay B., and Sharma A. 2004. Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Environmental and Experimental Botany, 52:199-223.
20- Pennanen T., Frostegard A., Fritze H., and Baath E. 1996. Phospholipid fatty acid composition and heavy metal tolerance of soil microbial communities along two heavy metal-polluted gradients in coniferous forests. Applied and Environmental Microbiology, 62:420-428.
21- Sarkar B. 2002. Heavy Metals in the Environment. Marcel Dekker Pub.: CRC Press, New York.
22- Shi W., Becker J., Bischoff M., Turco R., and Konopka A. 2002. Association of microbial community composition and activity with lead, chromium, and hydrocarbon contamination. Applied and Environmental Microbiology, 68: 3859-3866.
23- Zeng L.S., Liao M., Chen C.L., and Huang C.Y. 2007. Effects of lead contamination on soil enzymatic activities, microbial biomass, and rice physiological indices in soil lead rice (Oryza sativa L.) system. Ecotoxicology and Environmental Safety, 67:67-74.