پایداری بذر کنجدشیطانی L.) Cleome viscose) در بانک بذر خاک

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه زراعت، دانشکده تولید گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

چکیده

مطالعه پویایی بانک بذر علف­های هرز در خاک بسیار مهم است. جهت بررسی پایداری بانک بذر علف­هرز کنجدشیطانی، بذرهای این گیاه در دو عمق 10 و 20 سانتی‌متری خاک در همان مزرعه‌ای که بذرهای کنجدشیطانی از آن جمع‌آوری شده بود (شهرستان مینودشت - استان گلستان)، در آبان ماه 1401 دفن شدند. نمونه‌برداری در زمان‌های 15، 30، 60، 90، 120، 150، 180، 210، 240، 270، 300، 330 و 360 روز بعد از دفن انجام شد. در هر مرحله نمونه‌برداری، تعداد بذرهای جوانه‌زده در خاک، بذرهای پوچ، مرده و سالم با دقت شمارش شدند. از بذرهای سالم جهت انجام آزمون جوانه‌زنی در دماهای مختلف 35، 30، 25، 20 و 15 درجه سانتی‌گراد و در دو شرایط نور و تاریکی و همچنین استفاده از اسید جیبرلیک و عدم استفاده از آن استفاده شد. جهت بررسی اثر پس‌رسی بر قابلیت جوانه‌زنی بذرهای کنجدشیطانی نیز بخشی از بذرها در آزمایشگاه انبار شد. نتایج نشان داد که بذرهای تازه برداشت‌شده کنجدشیطانی ازجوانه‌زنی بسیار اندکی برخوردار بودند. پس‌رسی (در شرایط آزمایشگاه یا دفن در خاک) و اسید جیبرلیک در رفع خواب مؤثر بود، به‌طوری‌که باعث افزایش جوانه‌زنی بذرهای کنجدشیطانی در هر دو شرایط تاریکی و روشنایی شد. با رفع خواب بذرها، امکان جوانه‌زنی بذرهای این گیاه در محدوده وسیع­تری از دماها رخ داد و در مراحل آخر نمونه‌برداری، جوانه‌زنی آن‌ها کاهش و در محدوده دمایی کمتری رخ داد. بررسی تغییرات درصد بذرهای زنده و مرده در دو عمق 10 و 20 سانتی‌متر نشان داد که در هر دو عمق دفن، درصد بذرهای زنده در طی زمان کاهش و به تعداد بذرهای مرده افزوده شد، به‌طوری‌که در آخرین نمونه‌برداری، مصادف با 360 روز بعد ازدفن، تعداد بذرهای زنده در دو عمق 10 و 20 سانتی‌متر به‌ترتیب 12 و 23 درصد بود. می­توان نتیجه گرفت که تخلیه بانک بذر این علف هرز در عمق 10 سانتی‌متر سریع‌تر اتفاق می­افتد و بانک بذر کنجدشیطانی از نوع دائم می­باشد. بنابراین ریزش مکرر بذر این علف هرز در خاک می‌تواند این گیاه را به‌عنوان یک چالش دائمی و جدی برای کشاورزان تبدیل نماید.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Seed Persistence of Asian Spiderflower (Cleome viscose L.) in the Soil Seed Bank

نویسندگان [English]

  • Somayeh Mamashli
  • Asieh siahmarguee
  • Farshid Ghaderifar
Department of Agronomy, Faculty of Crop Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
چکیده [English]

Introduction
Asian spider flower weed (Cleome viscose L.) has recently entered the flora of weeds in Golestan province and causes significant damage to farmers in Golestan province every year. The seed production potential of this weed is high (> 38000 seeds per plant). Also, the seeds of this weed are very small (weight of 1000 seeds is equal to 1.05 grams) and thay have dormancy. Thus the annual shedding of the seeds of this weed and their accumulation in the soil form a stable seed bank that can be the source of weed contamination in fields for many years. Therefore, understanding the stability of the seed bank of this plant is very important and is very important in the successful management of this weed.
 
Materials and Methods
Ripe seeds of Asian spider flower were collected from a soybean field in Minoodasht city-Golestan province at the end of October and were transferred to the seed technology laboratory of Gorgan University of Agricultural Sciences and Natural Resources to perform various tests. Immediately after harvest, the germination ability of fresh seeds was examined at 30 °C. The germination percentage of freshly harvested seeds was 7%. In order to investigate the effect of After- ripening on the germination ability of Asian spider flower seeds, a part of the seeds was stored in the laboratory. In order to investigate the stability of the seed bank of this weed, 65 grams of sieved soil along with 13 grams of Asian spider flower seeds were placed in 26 mesh bags and buried at two depths of 10 and 20 cm on November 4, 1401. Sampling was done at 15, 30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 330 and 360 days after burial. At each sampling stage, the number of germinated seeds in the soil, null, dead and healthy seeds were counted carefully. Healthy seeds were used to perform tests to determine seed moisture, electrical conductivity, and germination at different temperatures of 15, 20, 25, 30, and 35 degrees Celsius and in two conditions of light and darkness, as well as the use of gibberellic acid and its non-use.
 
 
Results and Discussion
The freshly harvested seeds of Asian spider flower had very little germination. After- ripening (in laboratory conditions or buried in soil) and gibberellic acid were effective in eliminating the commune, so that it increased the germination of Asian spider flower seeds in both dark and light conditions. With the removal of the seed dormancy, the germination of the seeds of this plant has occurred in a wider range of temperatures. The germination response of Asian spider flower seed during the after- ripening and burial period was different to light and darkness and the ambient temperature also had an effect on it. Examining changes in the percentage of live and dead seeds at two depths of 10 and 20 cm showed that in both burial depths, the percentage of live seeds decreased over time and the number of dead seeds increased. So that in the last sampling, corresponding to 360 days after burial, the number of live seeds in two depths of 10 and 20 cm was 12 and 23%, respectively.
 
Conclusion
Considering that the germination percentage of Asian spider flower seeds increased during the after- ripening period and the use of gibberellic acid also improved the germination during the after-ripening period, it seems that the seeds dormancy of this plant are of physiological type. The occurrence of low temperatures in winter caused the removal dormancy of the buried seeds, and vice versa, the occurrence of high temperatures in the summer caused the induction of secondary dormancy in the remaining seeds. According to the increasing trend of the number of dead seeds in two depths of 10 and 20 cm, it can be said that the emptying of the seed bank of this weed occurred faster in the depth of 10 cm. Asian spider flower seed bank is a permanent type. Therefore, the frequent dropping of this weed's seed in the soil can turn this plant into a permanent and serious challenge for farmers.

کلیدواژه‌ها [English]

  • After-ripening
  • Burial depth
  • Seed bank
  • Seed bank stability
  • Viability

©2024 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

  1. Akbari Gelevardi, A. (2016). The effect of some environmental factors on seed germination and emergence of Cleome viscose Ma.Sc. Thesis, Plant Production Faculty, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran. 82p. (In Persian with English Abstract).
  2. Akbari Gelevardi, A., Siahmarguee, A., Ghaderi-Far, F., & Gherekhloo, J. (2021). The effect of environmental and management factors on seed germination and seedling emergence of Asian spiderflower (Cleome viscosa ). Weed Research, 61(5), 350-359. https://doi.org/10.1111/wre.12493 .
  3. Baskin, C.C., &Baskin, J.M. (2014). Seeds: Ecology, biogeography, and evolution of dormancy and germination, Academic Press, San Diego, 680 p.
  4. Baskin, C.C., & Baskin, J.M. (1988). Germination ecophysiology of herbaceous plant species in a temperate region. American Journal of Botany, 75(2), 286-305. https://doi.org/10.1002/j.1537-2197.1988.tb13441.x
  5. Benvenuti, S. (2003). Soil texture involvement involvement in germination and emergence of buried weed seeds. Agronomy Journal, 95, 191-198. https://doi.org/10.2134/agronj2003.1910.
  6. Cechin, J., Schmitz, M.F., Hencks, J.R., Vargas, A.A.M., Agostinetto, D., & Vargas, L. (2021). Burial depths favor Italian ryegrass persistence in the soil seed bank. Scientia Agricola, 78(3), e20190078. http://doi.org/10.1590/1678-992X-2019-0078
  7. Chauhan, B.S., & Johnson, D.E. (2010). The role of seed ecology in improving weed management strategies in the tropics. Advances in Agronomy105, 221-262. https://doi.org/10.1016/S0065-2113(10)05006-6
  8. Chauhan, B.S., Gill, G., & Preston, C. (2006). Influence of tillage systems on vertical distribution, seedling recruitment and persistence of rigid ryegrass (Lolium rigidum) seed bank. Weed Science, 54(4), 669-676. : https://doi.org/10.1614/WS-05-184R.1
  9. Davis, A.S., Renner, K.A., & Gross, K.L. (2005). Weed seedbank and community shifts in a long-term cropping systems experiment. Weed Science, 53, 296–306. https://doi.org/10.1614/WS-04-182.
  10. Ekpong, B. (2009). Effects of seed maturity, seed storage and pre-germination treatments on seed germination of cleome (Cleome gynandra). Scientia Horticulturae, 119(3), 236-240. https://doi.org/10.1016/j.scienta.2008.08.003
  11. Elahifard, E., & Derakhshan, A. (2018). Asian spiderflower (Cleome viscosa) germination ecology in southern Iran. Weed Biology and Management,18(3), 110-117. (In Persian with English Abstract). https://doi.org/10.1111/wbm.12154
  12. Emami, D., Siahmargoui, A., Kamkar, B., & Basiri. (2017). Investigating the competitiveness of soybean in the conditions of interference with different densities of devil's sesame (Cleome viscosa), an invasive weed in Golestan province, Plant Protection Journal, 32(4), 592-579. (In Persian with English Abstract).
  13. Fenner, M. (2000). Seeds: The Ecology of Regeneration in Plant Communities. Wallingford, United Kingdom, CABI Publishing. 410 p. https://doi.org/10.1079/9780851994321.0000.
  14. Footitt, S., Huang, Z., Clay, H.A., Mead, A., & Finch‐Savage, W.E. (2013). Temperature, light and nitrate sensing coordinate a rabidopsis seed dormancy cycling, resulting in winter and summer annual phenotypes. The Plant Journal,74(6), 1003-1015. https://doi.org/10.1111/tpj.12186
  15. Guja, L.K., Merritt, D.J., & Dixon, K.W. (2010). Buoyanancy, salt tolerancy and germination of coastal seeds: Implications for oceanic hydrochorous dispersal. Functional Plant Biology, 37, 1175-1186. https://doi.org/10.1071/FP10166
  16. Harrison, K., Regnier, E.E., Schmoll, J.T., & Harrison, J.M. (2007). Seed size and burial effects on giant ragweed (Ambrosia trifida) emergence and seed demise. Weed Science, 55(1), 16-22. https://doi.org/10.1614/WS-06-109.1
  17. Kan, I.A. Ullah, Z., Hassan, G., Marwat, K.B., Aminullah, J., Shah, S.M.A., & Khan, Sh. (2011). Impact of different mulches on weed flora and yield of maize. Pakistan Journal of Botany, 43(3), 1601-1602.
  18. Kamotho, G.N., Mathenge, P.W., Muasya, R.M., & Dulloo, M.E. (2014). Effects of maturity stage, desiccation and storage period on seed quality of Cleome (Cleome gynandra). Research Desk, 3,419-433.
  19. Lachman, J., Dudjak, J., Orsak, M., & Pivec, V. (2003). Effect of accelerated aging test on the content and composition of polyphenolic complex of wheat (Triticum aestivum) grains. Plant Soil Environment, 94, 1-7.
  20. Li, X.H., Li. X.H., Jiang, D.M., & Liu, Z. (2006). Germination strategies and patterns of annual species in the temperate semiarid region of China. Arid Land Research and Management, 20(3), 195-207. https://doi.org/10.1080/15324980600705651
  21. Liebman, M., Mohler, C.L., & Staver, C.P. (2001). Ecological Management of Agricultural Weeds. Cambridge, UK: Cambridge University Press, 532 p.
  22. Liu, W., Bai, S., Zhao, N., Zhang, L., & Wang, J. (2018). Non-target sit-based resistance to tribenuron-methyl and essential involved genes in Myosoton aquaticum (L). BMC. Plant Biology, 18, 225-237. https://doi.org/10.1186/s12870-018-1451-x
  23. Long, R.L., Gorecki, M.J., Renton, M., Scott, J.K., Colville, L., Goggin, D.E., Commander, L.E., Westcott, D.A., Cherry, H., & Finch‐Savage, W.E. (2015). The ecophysiology of seed persistence: A mechanistic view of the journey to germination or demise. Biological Reviews, 90(1), 31-59. https://doi.org/10.1111/brv.12095
  24. Mahmood, A.H., Florentine, S.K., Chauhan, B.S., McLaren, D.A., Palmer, G.C., & Wright, W., (2016). Influence of various environmental factors on seed germination and seedling emergence of a noxious environmental weed: Green galenia (Galenia pubescens). Weed Science, 64(3), 486-494. https://doi.org/10.1614/WS-D-15-00184.1
  25. Maikhuri, R.K., Semwal, R.L., Rao, K.S., Nautiyal, S., & Saxena, K.G. (2000). Cleome viscose, Capparidaceae: A weed or a cash crop? Economic Botany, 54, 150–154. https://doi.org/10.1007/BF02907819
  26. Malezieux, E. (2012). Designing cropping systems from nature. Agronomy for Sustainable Development, 32, 15-29. https://doi.org/1007/s13593-011-0027-z
  27. Maskova, T., & Poschlod, P. (2022). Soil seed bank persistence across time and burial depth in calcareous grassland habitats. Frontiers in Plant Science, 12, 790867. https://doi.org/10.3389/fpls.2021.790867
  28. Milberg, P., Andersson, L., & Noronha, A. (1996). Seed germination after short-duration light exposure: Implications for the photo-control of weeds. Journal of Applied Ecology, 33, 1469-1478. https://doi.org/10.2307/2404785
  29. Mohamadi, H. Ghaderi-Far, F., Siahmarguee, A., Zeynali, E., & Gherekhloo, J. (2023). Evaluation of winter wheat yield reduction in interference with wild rye weed: A case study of Shahkoh area-Golestan province. Plant production research. Journal of Plant Production, 30(3), 161-176. (In Persian with English Abstract).https://doi.org/ 10.22067/jpp.v34i4.86501.
  30. Moradi Sahra, M. (2022). Investigation of germination and dormancy of milk thistle (Silybum marianum Gaertn.) in seed bank. M.Sc. Thesis. Plant Production Faculty, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran. (In Persian with English Abstract).
  31. Muasya, R.M., Simiyu, J.N., Muui, C.W., Rao, N.K., Dulloo, M.E., & Gohole, L.S. (2009). Overcoming seed dormancy in Cleome gynandra to improve germination. Seed Tecnology, 31(2), 134-143. https://www.jstor.org/stable/23433309
  32. Ochuodho, J.O., & Modi, A.T. (2005). Temperature and light requirements for the germination of Cleome gynandraSouth African Journal of Plant and Soil, 22(1), 49-54.
  33. Onwuka, B., & Mang, B. (2018). Effects of soil temperature on some soil properties and plant growth. Advances in Plants and Agriculture Research, 8(1), 34-37.
  34. Oskouei, B., & Sheidaei, S. (2017). Seed deterioration. Iranian Journal of Seed Science and Research, 4(3), 125-143. (In Persian with English Abstract). https://doi.org/10.22124/jms.2017.2512
  35. Roberts, E.H., & Totterdell, S. (1981). Environmental seed dormancy in Rumex Plant Cell and Environmental, 4, 97-106.https://doi.org/10.1111/j.1365-3040.1981.tb01044.x
  36. Ravisankar, D., Chinnusamy, C., & Nithya, C. (2017). Weed management in herbicide tolerant transgenic maize-A review. Chemical Science Review and Letters, 6(24), 2364-2372.
  37. Saatkamp, A., Affre, L., Baumberger, T., Dumas, P.J., Gasmi, A., Gachet, S., & Arène, F. (2011). Soil depth detection by seeds and diurnally fluctuating temperatures: different dynamics in 10 annual plants. Plant and Soil,349, 331-340. https://doi.org/10.1007/s11104-011-0878-8
  38. Saifullah, K., Williams, A., & Adkins, S. (2023). Spider plant (Cleome gynandra): An emerging weed in the sweet corn–brassica cropping system. Agronomy, 13, 1430. https://doi.org/10.3390/agronomy13051430
  39. Schutze, Y. (2002). Zur Veränderung im Eltern-Kind-Verhältnis seit der Nachkriegszeit. Nave-Herz, Rosemarie (Hg.): Kontinuität und Wandel der Familie in Deutschland. Eine zeitgeschichtliche Analyse. Stuttgart: Lucius und Lucius, 71-97. https://doi.org/10.1515/9783110508208
  40. Schwartz-Lazaro, L.M., & Copes, J.T. (2019). A review of the soil seed bank from a weed scientists perspective. Agronomy, 9(7), 369. https://doi.org/10.3390/agronomy9070369
  41. Shilla, M.O., Abukutsa-Onyango, F., Dinnsa, F., & Winkelmann, T. (2016). Seed dormancy, viability and germination of Cleome gynandra L: A review. African Journal of Horticulture Science, 10, 42-52. http://www.hakenya.net/ajhs/index.php/ajhs/article/view/171/128
  42. Siahmarguee, A., Ghaderi-Far, F., & Bagheri, S.H. (2023). Effect of smoke and heat on dormancy and germination of Asian spiderflower seeds. Danesh Journal of Herbal Medicine, (In Press). (In Persian with English Abstract).
  43. Soltani, A., Zeinali, E., Galeshi, S., & Latifi, N. (2001). Genetic variation for and interrelationship among seed vigor traits in wheat from the Caspian Sea coast of Iran. Seed Science and Technology, 29, 653-662.
  44. Soltani, E., Soltani, A., Galeshi, S., Ghaderi-Far, F., & Zeinali, E. (2016). Vertical distribution of volunteer canola and wild mustard in their soil seed bank. Applied field Crop Research, 29(3), 20-28. (In Persian with English Abstract). https://doi.org/22092/AJ.2016.112674
  45. Thompson, K., & Grime, J.P. (1983). A comparative study of germination responses to diurnally-fluctuating temperatures. Journal of Applied Ecology, 20(1), 141-156. https://doi.org/10.2307/2403382.
  46. Thompson, K., Green, A., & Jewels, A.M. (1994). Seeds in soil and worm casts from a neutral grassland. Functional Ecology, 8, 29-35. https://doi.org/10.2307/2390108
  47. Tian, Y.G., Pang, L., Jiang, X.Q., & Lu, B.R. (2024). Impact of soil burial depths on survival of weedy rice seeds: Implications for weed management. Agronomy,14(6), 1281. https://doi.org/10.3390/agronomy14061281
  48. Tolo Hafezian, I., Kadrifar, F.M., Sadeghipour, H.R., Siahmargoi, A., Fadaei, F., & Torabi, b. (2018). Determining the community type of maritigal seed: The effects of post-clay and gibberellic acid treatments at different temperatures. Journal of Crop Production, 2(12), 186-171.
  49. Vargas, A.A.M., Agostinetto, D., Zandona, R.R., Fraga, D.S., & Avila Neto, R.C. (2018). Longevity of horseweed seed bank depending on the burial depth. Planta Daninha, 36, 182073.
  50. Viana, A.M., & Felippe, G.M. (1986). Effect of light and temperature on the seed germination of Dioscorea compositaRevista Brasileira de Botanica,9, 109-116.
  51. Wei, S., Zhang, C., Li, X., Cui, H., Huang, H.B., Menge, Q., & Zhang, H. (2009). Factors affecting buffalobur (Solanum restratum) seed germination and seedling emergence. Weed Science, 57, 521-525. https://doi.org/10.1614/WE-09-054.1
  52. Yunusabadi, M., Faez, R.A., Akram Qadrifar, F., Savarinejad, A.R., & Kashiri, H.A. (2017). Investigating the weed seed bank of cotton fields in Golestan province. Iranian Cotton Research Journal, 6(1), 65-80. (In Persian with English Abstract).

 

CAPTCHA Image