الگوی رویش قیاق (Sorghum halepense (L.) Pers.) در مزرعه ذرت تحت تأثیر عملیات مدیریتی

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشکده کشاورزی و صنایع غذایی، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، تهران، ایران

2 دانشگاه آزاد اسلامی-واحد علوم و تحقیقات

3 دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران، تهران، ایران

چکیده

پیش­بینی زمان رویش علف­های­هرز از ابزارهای ارزشمند تصمیم­گیری در مدیریت تلفیقی علف­های­هرز می­باشد که می­تواند به منظور بهینه­سازی برنامه­های کنترل علف­های­هرز مورد استفاده قرار گیرد. بدین منظور جهت پیش­بینی زمان ظهور گیاهچه­های قیاق حاصل از بذر و ریزوم آزمایش مزرعه­ای طی دو فصل بهار و تابستان 1401 در مزرعه تحقیقاتی واقع پردیس کشاورزی دانشگاه تهران واقع در کرج اجرا شد. آزمایش به صورت بلوک کامل تصادفی با چهار تکرار انجام شد. تیمارهای مورد بررسی چهار تاریخ شخم شامل 15 اردیبهشت، 30 اردیبهشت، 15 خرداد و 30 خرداد بودند. چهار مدل سیگموئیدی، لجستیک، گامپرتز و ویبول جهت بررسی الگوی رویش گیاهچه­های حاصل از بذر و ریزوم مورد استفاده قرار گرفتند. نتایج نشان داد که مدل لجیستیک با دارا بودن پایین­ترین شاخص اکائیک از دقت بیشتری برخوردار بود. اثر شخم در الگوی رویش قیاق­های بذری و ریزمی قابل توجه بود. تاریخ­های شخم اردیبهشت با جمعیت بالای گیاهچه­های بذری و ریزومی ولی به نسبت یکسان در جمعیت همراه بود. تاریخ­های شخم خرداد ماه با کاهش جمعیت گیاهچه­های بذری و افزایش گیاهچه­های ریزومی در جمعیت قیاق همراه بود. در تاریخ­های شخم اردیبهشت ماه، واریانس رویش در بین 6 تکرار آزمایشی کوچکتر بود و در نتیجه برازش مدل­ها با دقت بالاتری صورت پذیرفت. حال آنکه با تأخیر زمان شخم و افزایش دما، واریانس بین تکرارها به شدت افزایش یافت و در نتیجه برازش توابع به الگوی رویش گیاهچه­های قیاق با دقت پایین­تری صورت پذیرفت. با توجه به اینکه در همه زمان­ها، جمعیت ریزومی در مزرعه بالاست پیشنهاد می­شود برنامه­های کنترلی براساس جمعیت ریزومی نوشته و اجرا گردد. این نکته در شخم­های دیرهنگام و تاریخ کشت­های تاخیری از اهمیت بالاتری برخوردار است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Pattern of Johnson Grass (Sorghum halepense (Pers.) L.) Emergence in Corn Field under the Influence of Management Operations

نویسندگان [English]

  • M. Valikhanzadi 1
  • M. Diyanat 2
  • M. Oveisi 3
1 Department of Agricultural Sciences and Food Industries, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 Department of Agricultural Sciences and Food Industries, Science and Research Branch, Islamic Azad University, Tehran, Iran
3 College of Agriculture and Natural Resources University of Tehran, Tehran, Iran
چکیده [English]

Introduction
Prediction of weed emergence time is one of the valuable decision-making tools in integrated weed management, which can be used to optimize weed control programs. Among human agricultural practices, tillage is one of the main drivers of weed communities. The emergence pattern has sensitive receptors that may change with a manipulation such as tillage or any other management activity. Johnson grass (Sorghum halepense (Pers.) L.) from the Poaceae family is a C4 perennial weed and one of the most invasive weeds in the world. This weed has spread in one third of the world's regions, which has led to a major reduction of biological and agricultural diversity in Asia, Africa, America and Europe. It ranks sixth in the list of 30 worst weeds in the world in 53 countries and has become endemic in millions of hectares of the world. Cutworms have been reported in crops including wheat (Triticum aestivum L.), soybean (Glycine max L.), corn (Zea mays L.), cotton (Gossypium hirsutum L.), vegetables and fruit trees.
 
Materials and Methods
In order to predict the time of emergence of seedlings from seeds and rhizomes, a field experiment was conducted during the spring and summer of 2022 in the research farm located in the Agricultural Campus of Tehran University located in Karaj. The experiment was conducted as a randomized complete block with four replications. The investigated treatments were four tillage dates including 15 May, 30 May, 15 June and 30 June. 20 plots with dimensions of 2 ×1 m2 were prepared in a part of the research farm which has a high level of Johnson grass contamination based on previous monitoring. Tillage is done up to a depth of 20 cm in the plots. In each plot, three quadrates with dimensions of 0.5 × 0.5 m2 were installed, and seed seedlings and rhizomes were counted at weekly intervals until the end of the season. Four models (Logistic, Sigmoidal, Gumpertz and Weibull) were used to investigate the emergence pattern of seedlings obtained from seeds and rhizomes. Analysis of variance was done with the help of SAS 9.1 software. Sigma plot software was used to brush the models.
 
Results and Discussion
The minimum square standard error model with an explanation coefficient of 0.85 and also the root mean square error of 5.35 has been able to predict the cumulative emergence of the seedlings of Johnson grass seeds. These values were 0.94 and 3.8 respectively in predicting the cumulative emergence of seedlings from the rhizome, which indicates the higher accuracy of the model in predicting the emergence from the rhizome. The results showed that, in general, the used models had close values of the corrected coefficient of explanation and root mean square error, so these indicators were not able to distinguish the more accurate model. But in general, since models with a lower Akaike index are more accurate anyway, the logistic model was chosen as the best model. The effect of plowing was significant on the germination pattern of seed and rhizomes. May plowing dates were associated with a high population of seed and rhizome seedlings, but in the same proportion in the population. Seed seedlings emergent in a smaller number and during a shorter period of the season, while rhizome shoots are observed in a longer period and with a much higher number in the field. In general, the emergence of seed seedlings started earlier, slightly before rhizome seedlings. With the gradual increase in temperature from May 15 to June 30, the response of rhizome seedlings to temperature has been variable among the studied squares. A similar trend regarding the increase of germination variance can be seen in the case of seeds, with the difference that the variance was much higher in the case of seed seedlings. This indicates that the seeds are more sensitive to the increase in temperature and their variable response to environmental changes.
 
Conclusion
The plowing dates during June were associated with a decrease in the population of seed seedlings and an increase in rhizome seedlings of the Johnson grass population. Considering that the rhizome population in the farm is high at all times, it is suggested to write and implement control programs based on the rhizome population. This point is more important in late tillage and late planting dates.

کلیدواژه‌ها [English]

  • Akaike index
  • Logistic model
  • Rhizome
  • Tillage
  • Acciaresi, H.A., & Guiamet, J.J. (2010). Below- and above-ground growth and biomass allocation in maize and Sorghum halepense in response to soil water competition. Weed Research, 50, 481–492.
  • Arnold, B.R.L., Fenner, M., & Edwards, P.J. (1992). Changes in dormancy level in Sorghum halepense (L.) Pers. seeds induced by water stress during seed development. Functional Ecology, 6, 596–605.
  • Baker, J.M., Ochsner, T.E., Venterea, R.T., & Griffis, T.J. (2007). Tillage and soil carbon sequestration-What do we really know. Agriculture Economic Environment, 118(1-4), 1-5. https://doi.org/10.1016/j.agee.2006.05.014
  • Barroso, J., Maxwell, B.D., Dorado, J., Andujar, D., San Martı´n, C., & Fernandez-Quintanilla, C. (2016). Response of Sorghum halepense demographic processes to plant density and rimsulfuron dose in maize. Weed Research, 56, 304-312.
  • Benech-Arnold, R.L., Ghersa, C.M., Sanchez, R.A., & Insausti, P. (1990). A mathematical model to predict Sorghum halepense (L.) Pers. seedling emergence in relation to soil temperature. Weed Research, 30, 91–99.
  • Benvenuti, S., & Macchia, M. (2006). Seedbank reduction after different stale seedbed techniques in organic agricultural systems. Italian Journal of Agronomy, 1, 11-22.
  • Bhagirath, S., & Chauhan, F. (2006). Seed germination and seedling emergence of threehorn bedstraw (Galium tricornutum). Weed Science, 54, 867–872.
  • Boyd, N., & Van Acker, A. (2004). Seed and microsite limitations to emergence of four annual weed Weed Science, 52, 571-577.
  • Brown, R.F., & Mayer, D.G. (1988). Representing cumulative germination. 2. The use of the Weibull function and other empirically derived curves. Annals Botany, 61, 127–138.
  • Buhler, D.D., & Gunsolus, J.L. (1996). Effect of date of preplant tillage and planting on weed populations and mechanical weed control in soybean (Glycine max). Weed Science, 44(2), 373-379.
  • Burnham, K.P., & Anderson D.R. )2002(. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. Springer Verlag, New York.
  • Clements, D.R., Benoit, D.L., Murphy, S.D., & Swanton, C.J. (1996). Tillage effects on weed seed return and seedbank composition. Weed Science, 44(2), 314-322.
  • Chauhan, B.S. (2016). Germination biology of Hibiscus tridactylites in Australia and the implications for weed management. Scientific Report6(1), 1-6.
  • Donald, W.W. (2000). A degree-day model of Cirsium arvense shoot emergence from adventitious root buds in spring. Weed Science, 48, 333-341.
  • Dorado, J., Sousa, E., Calha, I.M., Gonzalez-Andujar, J.L., & Fernandez-Quintanilla, C. (2009). Predicting weed emergence in maize crops under two contrasting climatic conditions. Weed Research, 49, 251-260.
  • Ebrahimi, E., Eslami, S.V., Jami Al-Ahmadi, M., & Mahmodi, S. (2011). Studying the effect of different environmental factors on germination of Ceratocarpus arenarius. Bluk seed. Iranian Journal of Weed Science, 7(1), 45-87. (In Persian with English abstract)
  • Finch-Savage, W., Phelps, K., Steckel, J., Whalley, W., & Rowse, H. (2001). Seed reserve dependent growth responses to temperature and water potential in carrot (Daucus carot L.). Journal of Experimental Botany, 52, 2187-2197.
  • Forcella, F., & Wilson, R.G., Dekker, J. (1997). Weed seed bank emergence across the Corn Belt. Weed Science, 67, 123–129.
  • Forcella, F. (1998). Real-time assessment of seed dormancy and seedling growth for weed management. Seed Science Research, 8, 201-209.
  • Forcella, F., Benech-Arnold, R.L., Sanchez, R., & Ghersa, C.M. (2000). Modeling seedling emergence. Field Crops Research, 67, 123-139.
  • Goharian, A., Sadat Asilan, K., & Mansourifar, C. (2019). Effect of environmental factors on
    some seed germination aspects of two populations of common cocklebur (Xanthium strumarium ). Iranian Journal of Seed Science and Research, 6(3), 411-425. (In Persian with English absrtact)
  • Gonzalez‐Andujar, J.L., Chantre, G.R., Morvillo, C., Blanco, A.M., & Forcella, F. (2016). Predicting field weed emergence with empirical models and soft computing techniques. Weed Reseearch, 56(6), 415-423.
  • Heap, I. (2014). Herbicide resistant weeds. p. 281–301. In: Pimentel, D., Peshin, R. (eds) Integrated pest management. Springer, Dordrecht.
  • Holm, L.G., Plucknett, D.L., Pancho, J.V., & Herberger, J.P. (1997). Sorghum halepense Pers. p. 54–61. In: Holm (ed) The world’s worst weeds, distribution and biology. The University Press of Hawaii, Honolulu.
  • Holshouser, D.L., Chandler, J.M., & Wu, H.I. (1996). Temperature-dependent model for non-dormant seed germination and rhizome bud break of Johnson grass (Sorghum halepense). Weed Science, 44(2), 257-265.
  • Hoyle, G.L., Venn, S.E., Steadman, K.J., Good, R.B., McAuliffe, E.J., Williams, E.R., & Nicotra, A.B. (2013). Soil warming increases plant species richness but decreases germination from the alpine soil seed bank. Global Change Biology, 19(5), 1549-1561.
  • Izquierdo, J., Gonzalez-Andujar, J.L., Bastida, F., Lezaun, J.A., & Sanchez-Arco, M.J. (2009). A thermal time model to predict corn poppy (Papaver rhoeas) emergence in cereal fields. Weed Science, 57, 660–664.
  • Johnson, D.B., & Norsworthy, J.K. (2014). Johnsongrass (Sorghum halepense) management as influenced by herbicide selection and application timing. Weed Technology, 28, 142–150. http://dx.doi.org/10.1155/2016/8040235
  • Kaleibar, B.P., Oveisi, M., Alizadeh, H., & Mueller Schaerer, H. (2021). A thermal time model for optimising herbicide dose in maize. Weed Research, 61(6), 465-474.
  • Khakzad, R., Al Ibrahim, M.T., & Oveisi, M. (2019). Investigating the effect of management operations on the germination time of Euphorbia maculata in soybean. Iranian Journal Weed Science, 16, 27-43. (In Persian with English abstract)
  • Khan, M.A., & Gulzar, S. (2003). Light, salinity, and temperature effects on the seed germination of perennial grasses. American Journal of Botany, 90(1), 131-134.
  • Locke, M.A., Reddy, K.N., & Zablotowicz, R.M. (2002). Weed management in conservation crop production systems. Weed Biology Management, 2(3), 123-132.
  • Miguel, L.V., & Ghersa, C. (1993). Improving johnsongrass (Sorghum halepense) control in soybean and sunflower cropping systems. Weed Science, 41, 107-113.
  • Mitskas, M.B., Eleftherohorinos, I.G., & Damalas, C.A. (2003). Interference between corn and Johnsongrass (Sorghum halepense) from seed or rhizome. Weed Science, 51, 540–545.
  • Mihovsky, T., & Pachev, I. (2012). Reduced tillage practices. Banat’s Journal of Biotechnology, 3, 49–58.
  • Mousavi, K., Ali Ghanbari, A., Ghorbani, R., & Baghestani, M.A. (2018). After-ripening and Emergence Pattern of Wild Wheat (Triticum boeoticum Boiss) and Wild Barley (Hordeum spontaneum Koch) under Dryland Condition of Lorestan Province. Iranian Plant Protection Research, 32, 385-398. (In Persian with English abstract). https://doi.org/10.22067/jpp.v32i2.61452
  • Norsworthy, J.K., & Oliveira, M.J. (2007 a). A model for predicting common cocklebur (Xanthium strumarium) emergence in soybean. Weed Science, 55, 341-345.
  • Norsworthy, J.K., & Oliveira, M.J. (2007 b). Effect of tillage and soyabean on Ipomoea lacuosa and Senna obtusifolia Weed Research, 47, 499–508.
  • Norton, M.R., Malinowski, D.P., & Volaire, F. (2016). Plant drought survival under climate change and strategies to improve perennial grasses. A review. Agronomy Sustainable Development, 36(2), 1-15.
  • Roman, E.S., Murphy, S.D., & Swanton, C.J. (2000). Simulation of Chenopodium album Weed Science, 48, 217–224.
  • Uludag, A., Gozcu, D., Rusen, M., Guvercin, R.S., & Demir, A. (2007). The effect of Johnsongrass densities (Sorghum halepense Pers.) on cotton yield. Pakistan Journal of Biological Science, 10, 523–525.
  • Uremis, I., Arslan, M., Uludag, A., & Sangun, M. (2009). Allelopathic potentials of residues of 6 brassica species on johnsongrass [Sorghum halepense (L.) Pers.]. African Journal of Biotechnology, 8, 3497–3501.
  • Valverde, B.E., & Gressel, J. (2006). Dealing with the evolution and spread of Sorghum halepense glyphosate resistance in Argentina. Consultancy Report to SENASA, Buenos Aires.
  • Vega, J., Owen, M., & Pitty, A. (1995). Organisms associated with Johnson grass [Sorghum halepense (L.) Pers.] in Honduras’. Review Ceiba, 36, 189–195.
  • Ward, J., Smith, S., & McClaran, M. (2006). Water requirements for emergence of buffelgrass (Pennisetum ciliare). Weed Science, 54, 720-725.
  • Zare, A., Elahifard, E., Taklifi Adnani, Z., & Roustaei A. (2020). Quantifying field weeds emergence pattern of weeds in rapeseed under weather conditions of Khuzestan, Iran. Iranian Journal of Crop Sciences, 22(2), 198-211. (In Persian with English abstract). https://doi.org/10.29252/abj.22.2.198

 

CAPTCHA Image