بررسی تغییرات pH آب در مخزن سمپاش بر کارایی علف کش های گلایفوسیت و نیکوسولفورون در کنترل علف های هرز سوروف و گاوپنبه

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشگاه فردوسی مشهد، دانشکده کشاورزی، گروه زراعت و اصلاح نباتات

2 فردوسی مشهد

3 موسسه تحقیقات گیاهپزشکی ایران

چکیده

به منظور بررسی تغییرات اسیدیته آب (شامل هفت سطح pH معادل 4، 5، 6، 7، 8، 9 و 10) در مخزن سمپاش گلایفوسیت (Roundup®, 41% SL) و نیکوسولفورون (Cruse®, 4% SC) در کنترل علف های هرز سوروف (Echinochloa crus-galli) و گاوپنبه (Abutilon theophrasti)، دو آزمایش گلدانی به صورت فاکتوریل 7×2 و در قالب طرح کاملا تصادفی با 6 تکرار (به انضمام 3 گلدان شاهد علف هرز برای هر سطح pH) در گلخانه تحقیقاتی دانشگاه فردوسی مشهد در سال 1390 اجرا شد. گلایفوسیت و نیکوسولفورون به ترتیب در مقادیر 158 و 22 گرم ماده مؤثره در هکتار (بدون مویان) به صورت پس رویشی در مرحله 3 تا 4 برگی علف های هرز در حجم سمپاشی 250 لیتر در هکتار اعمال شدند. نتایج نشان داد که بقاء، ارتفاع بوته، سطح برگ، وزن تر و خشک اندام هوایی (درصد شاهد) علف های هرز به طور معنی داری (01/0≥P) تحت تأثیر تغییرات pH محلول علف کش ها قرار گرفتند. علف کش نیکوسولفورون در pH های 7 و 8 آب مخزن سمپاش بیشترین تأثیر را در کنترل علف هرز سوروف ایجاد کرد، در صورتی که بیشـترین کارایی نیکوسولفورون بر گاوپنبه در 8pH= به دست آمد. این در حالی بود که علف کش گلایفوسیت در اسیدیته آب معادل 7-6 و 6 بهترین کنترل را به ترتیب روی علف های هرز سوروف و گاوپنبه نشان داد. در مجموع، pH های قلیایی تر آب برای کارایی نیکوسولفورون در مقایسه با گلایفوسیت مناسب بودند. نتایج این آزمایش، نقش pH آب مخزن سمپاش بر کارایی علف کش های گلایفوسیت و نیکوسولفورون در کنترل علف های هرز سوروف و گاوپنبه را مورد تأکید قرار داد.

کلیدواژه‌ها


عنوان مقاله [English]

The Investigation of pH Variation of Water in Spray Tank on Glyphosate and Nicosulfuron Performance on Barnyardgrass and Velvetleaf Control

نویسندگان [English]

  • K Hajmohammadnia Ghalibaf 1
  • M. H. Rashed Mohassel 2
  • M. Nassiri Mahallati 2
  • E. Zand 3
1 Ferdowsi University of Mashhad
چکیده [English]

Introduction: Many factors affect the absorption, transport and performance of herbicides, include; physical factors (such as the orientation, shape, size, cuticle thickness, and its amount downy of the plant leaves), physiological factors (such as the growth stage and its succulence), environmental factors (like rainfall after spraying, relative humidity, wind, and temperature), as well as water quality in spray tank (32). The quality of natural water resources is very important, because the water passes through soil and rocks and dissolve natural salts and transfer them to groundwater reserves (12). pH is a chemical scale for measuring the concentration of hydrogen ions (H+) in the water (21). When pH of solution is less than herbicides pKa (ionic dissociation constant), increasing pH can increase the solubility of herbicides, especially when the absorption limitation of herbicide is because of its solubility (14). To investigate the effect of water pH in herbicide spray tank, testing the effectiveness of weed control is appropriate method. The different species of weeds may have different amounts of ions in the tissue that showed different responses to herbicide solution (14). Accordingly, these basic experiment conducted to study the pH variation of water in spray tank on glyphosate (Roundup®) and nicosulfuron (Cruse®) performance on barnyardgrass [Echinochloa crus-galli (L.) P. Beauv.] and velvetleaf (Abutilon theophrasti Medicus.) control in the greenhouse condition.
Materials and Methods: Two separate experiments were performed as factorial arrangement of treatments 2×7 based on completely randomized design with six replications at Research Greenhouse of the Ferdowsi University of Mashhad in 2010. Factors included were: pH at 7 levels (4, 5, 6, 7, 8, 9, and 10) obtained by using buffer prepared solutions (+3 control pots for each pH level), and two weeds (barnyardgrass and velvetleaf). Glyphosate and nicosulfuron herbicides were applied post emergent 158 and 22 g ai ha-1 (based on ED50 outcome preliminary test (11)), recpectively, at the 3-4 leaf stage of the weeds in a spray volume of 250 L ha-1. Four weeks after treatment, survival, plant height, leaf area, shoot fresh and dry weight of weeds (% control) were calculated. The data of experiment were subjected to ANOVA using MSTATC software. Means of the treatments were separated using Duncan’s Multiple Range Test at α = 0.05. Based on the distribution of data, regression analysis was used as two, third, and four-degree polynomial.
Result and Discussion: The results showed significant effect (P≤0.01) of water pH variation in spray tank of herbicides on survival, plant height, leaf area, shoot fresh and dry weight of weeds (% control). Nicosulfurone herbicide in water pH equal 7 and 8 showed the highest effect on barnyardgrass weed, so that, the highest activity of nicosulfuron herbicide on velvetleaf was found in water pH= 8. Whereas, glyphosate herbicide in water pH equal 6-7 and 6 showed the highest effect on barnyardgrass and velvetleaf, recpectively. The total, more alkaline pH of water in spray tank was suitable for nicosulfuron compared to glyphosate performance (9, 28). Comparison between two weeds was showed that nicosulfuron effect on barnyardgrass control was more than of velvetleaf. So that in the best performance of the herbicide (water pH= 8), values of survival, plant height, leaf area, fresh weight and dry weight (% control) were estimated equal 25.8%, 16.7%, 21.6%, 4.6%, and 2.6% for barnyardgrass, respectively. The corresponding values for velvetleaf were 50.0%, 61.1%, 53.6%, 32.9%, and 24.5%, respectively.
In general, the solubility of sulfonylurea herbicides in water decreases with decreasing pH. Therefore, an acidic solvent prevent from their optimal distribution and their efficiency are reduced (18, 22). In this regard, Matocha and Senseman (15) reviewed the half-life of Trifloxysulfuron herbicide in water pH 5, 7 and 9 and found that this herbicide hydrolyzed faster in acidic pH than neutral/ alkaline pH. Green and Cahill (9) also were showed when alkaline agents added to spray tank, increased the pH of nicosulfuron solution and finger grass (Digitaria sanguinalis) was well controlled by this herbicide. The researchers, increasing the nicosulforon performance on weed knew because of its higher solubility at high pH. In research conducted by Buhler and Burnside (4) concluded that an increase in the water pH of glyphosate spray tank (400 g ai ha-1) by from 2.4 to 7 and 9, reduced herbicide performance on oat (Avena sativa) 14 days after spray at the greenhouse experiment (P≤0.05). So that, shoot fresh weight of oat was lost by 69 percent at pH= 2.4 (compared to the control without spraying). The corresponding values for pH 7 and 9, were estimated 62% and 55%, respectively. Field test results also coincided with greenhouse experiment (4).
Conclusion: Results of current study emphasized the role of water pH in spray tank of glyphosate and nicosulfuron on barnyardgrass and velvetleaf control.

کلیدواژه‌ها [English]

  • Biomass
  • Post emergence
  • Solution quality
  • Surfactant
1- Altland J. 2001. Water quality affects herbicide efficacy. Available at www.oregonstate. edu. (visited 25 November 2010)
2- Berger B.M. and Wolfe N.L. 1996. Hydrolysis and biodegradation of sulfonylurea herbicides in aqueous buffer systems and anaerobic water sediment systems: assessing fate pathways using molecular descriptors. Environmental Toxic Chemical, 15:1500–1507.
3- Bernards M.L., Thelen K.D. and Penne D. 2005. Glyphosate efficacy is antagonized by manganese. Weed Technology, 19:27-34.
4- Buhler D.D. and Burnside O.C. 1983. Effect of water quality, carrier volume, and acid on glyphosate phytotoxicity. Weed Science, 31:163-169.
5- Burgess P. 2003. Quality of pesticide spray water. Available at www.agrapoint.ca. (visited 5 August 2011)
6- Caldwell J. 2007. Hard water can hinder chemical efficacy. Agriculture Online News and Features Editor.
7- Elahifard E. 2005. Investigation on Phalaris minor resistance to Aryloxyphenoxypropionate herbicides. Thesis of MSc. Agricultural College, Ferdowsi University of Mashhad. (in Persian with English abstract)
8- Fathi Gh. and Arjmand A. 1999. Herbicides and plant physiology (Translated). Jahade Daneshgahi Mashhad Press. 172 p.
9- Green J.M. and Cahill W.R. 2003. Enhancing the biological activity of nicosulfuron whit pH adjusters. Weed Technology, 17:338-345.
10- Green J.M. and Hale T. 2005. Increasing and decreasing pH to enhance the biological activity of nicosulfuron. Weed Technology, 19:468-475.
11- Hajmohammadnia Ghalibaf K., Rashed Mohassel M.H., Nassiri Mahallati M. and Zand E. 2011. Dose response of barnyardgrass (Echinochloa crus-galli L.) and velvetleaf (Abutilon theophrasti Medicus.) to glyphosate and nicosulfuron under greenhouse condition. Journal of Plant Protection, 25(2): 202-213. (in Persian with English abstract)
12- Heidekamp A.J. and Lemley A.T. 2005. Hard water. Water quality program, College of human ecology, Cornell University.
13- Holm F.A. and Henry J.L. 2005. Water quality and herbicides. Available at www.gov.sk.ca. (visited 11 October 2009)
14- Istv̕an D. and Endre M. 2009. Efficacy of herbicides influenced by spray carrier water pH and hardness. Journal of Agricultural Science, Debrecen. Pp. 141-146.
15- Matocha M.A. and Senseman S.A. 2007. Trifloxysulfuron dissipation at selected pH levels and efficacy on palmer amaranth (Amaranthus palmeri). Weed Technology, 21:674-677.
16- McMullan P.M. 1996. Grass herbicide efficacy as influenced by adjuvant, spray solution pH, and ulteraviolet light. Weed Technology, 10:72-77.
17- Mekki M. and Leroux G.D. 1994. Activity of nicosulfuron, rimsulfuron, and their mixture on field corn (Zea mays), soybean (Glycine max), and seven weed species. Weed Technology, 8:436-440.
18- Mousavi S.K., Zand E. and Saremi H. 2005. Physiological function and application of herbicides. Zanjan University Press. 286 p.
19- Nalewaja J.D. and Matysiak R. 1993. Spray carrier salts affect herbicide toxicity to kochia (Kochia scoparia). Weed Technologt, 7:154-158.
20- Nalewaja J.D., Woznica Z. and Manthey F.A. 1990. Sodium bicarbonate antagonism of 2,4-D amine. Weed Technology, 4:588-591.
21- Peterson H.G. 1999. Farm chemical spraying and mixing water quality. Available at www.agr.gc.ca. (visited 11 August 2010)
22- Petroff R. 2000. Water quality and pesticide performance. Available at www.scarab.msu.montana. edu. (visited: 11 August 2010)
23- Rao V.S. 2000. Principles of Weed Science, second ed. Science Publishers, Inc, New Hampshire.
24- Sensmen S.A. 2007. Herbicide Handbook. (9th ed). Weed Science Society of America, 458p.
25- Steinbauer G.P. and Grigsby B. 1959. Methods of obtaining field and laboratory germination of seeds of bindweeds, lady's thumb and velvetleaf. Weeds, 7:41-46.
26- Sung S.S., Leather G.L. and Hale M.G. 1987. Development and germination of barnyardgrass (Echinochloa crus-galli) seeds. Weed Science, 35:211-215.
27- Terra B.R.M., Martiny A.R. and Lindquistz J.L. 2007. Corn-velvetleaf (Abutilon theophrasti) interference is affected by sublethal doses of postemergence herbicides. Weed Science, 55:491-496.
28- Vencill V.K. 2002. Herbicide Handbook. 8th ed. Champaign, IL: Weed Science Society of America, Pp. 216-217.
29- Vicari A., Zimdahl R.L., Cranmer B.K., and Dinelli G. 1996. Primisulfuron and rimsulfuron degradation in aqueous solution and adsorption in six Colorado soils. Weed Science, 44:672–677.
30- Waltz A.L., Martin A.R., Roeth F.W. and Lindquist J.L. 2004. Glyphosate efficacy on velvetleaf varies with application time of day. Weed Technology, 18:931-939.
31- Webster T.M., Hanna W.W. and Mullinix Jr. B.G. 2004. Bermudagrass (Cynodon spp.) dose-response relationships with clethodim, glufosinate and glyphosate. Pest Management Science, 60:1237-1244.
32- Zand E., Nosrati, I., Hajmohammadnia Ghalibaf K. and Jabbari, H. 2014. Water quality effect on herbicides performance. p. 385-414. In Zand E., Mousavi S.K., and Heidari A. 2014. Herbicides and their applications (2nd edition by fundamental changes). Jahade Daneshgahi Mashhad Press. 552p.
CAPTCHA Image