Behdad, E. (1991). Iran Pests of Fruit Trees (2nd Ed.), Bahman Nashr Press, Esfahan, Iran, 826 pp. (in Persian)
Blanchet, F.G., Cazelles, K., & Gravel, D. (2020). Co‐occurrence is not evidence of ecological interactions.
Ecology Letters,
23(7), 1050-1063.
https://doi.org/10.1111/ele.13525
Blomquist,C.L., & Kirkpatrick, B.C. (2002). Frequency and seasonal distribution of pear psylla infected with the pear decline phytoplasma in California pear orchards.
Phytopathology,
92(11), 1218-1226.
https://doi.org/10.1094/PHYTO.2002.92.11.1218
Boopathi, T., Singh, S. B., Manju, T., Ramakrishna, Y., Akoijam, R. S., Chowdhury, S., Ngachan, S. V., Waisel, Y., & Bose, A. (2015). Development of temporal modeling for forecasting and prediction of the incidence of lychee,
Tessaratoma papillosa (Hemiptera: Tessaratomidae), using time-series (ARIMA) analysis.
Journal of Insect Science,
15(1), 55.
https://doi.org/10.1093/jisesa/iev034
Butt, B. A., Stuart, L. C., & Bell, R. L. (1989). Feeding, longevity, and development of pear psylla (Homoptera: Psyllidae) nymphs on resistant and susceptible pear genotypes.
Journal of Economic Entomology,
82(2), 458-461.
https://doi.org/10.1093/jee/82.2.458
Damos, P. (2016). Using multivariate cross correlations, Granger causality and graphical models to quantify spatiotemporal synchronization and causality between pest populations.
BMC ecology,
16, 1-17.
https://doi.org/10.1186/s12898-016-0087-7
Damos, P. T., & Savopoulou-Soultani, M. (2010). Development and statistical evaluation of models in forecasting moth phenology of major lepidopterous peach pest complex for Integrated pest management programs.
Crop Protection,
29(10), 1190-1199.
https://doi.org/10.1016/j.cropro.2010.06.022
Daniel Kissling, W., Pattemore, D. E., & Hagen, M. (2014). Challenges and prospects in the telemetry of insects.
Biological Reviews, 89(3), 511-530.
https://doi.org/10.1111/brv.12065
Del Monte‐Luna, P., Brook, B. W., Zetina‐Rejón, M. J., & Cruz‐Escalona, V. H. (2004). The carrying capacity of ecosystems. Global Ecology and Biogeography, 13(6), 485-495. https://doi.org/10.1111/j.1466-822X.2004.00131.x
Dennis, E. B., Kéry, M., Morgan, B. J., Coray, A., Schaub, M., & Baur, B. (2021). Integrated modelling of insect population dynamics at two temporal scales.
Ecological Modelling,
441, 109408.
https://doi.org/10.1016/j.ecolmodel.2020.109408
Didham, R. K., Basset, Y., Collins, C. M., Leather, S. R., Littlewood, N. A., Menz, M. H. M., Müller, J., Packer, L., Saunders, M. E., Schönrogge, K., Stewart, A. J. A., Stork, N. E., Samways, M. J., & Hassall, C. (2020). Interpreting insect declines: Seven challenges and a way forward.
Insect Conservation and Diversity,
13(2), 103-114.
https://doi.org/10.1111/icad.12408
Dimri, T., Ahmad, S., & Sharif, M. (2020). Time series analysis of climate variables using seasonal ARIMA approach. Journal of Earth System Science, 129, 1-16. https://doi.org/10.1007/s12040-020-01408-x
Erfani, J., Ebadi, A., Abdollahi, H., & Moghaddam, M. F. (2014). Evaluation of genetic diversity of some pear (Pyrus spp.) genotypes and species based on morphological characteristics. Iranian Journal of Horticultural Science, 45(1), 11-21. (in Persian)
Flores, J. H. F., Engel, P. M., & Pinto, R. C. (2012). Autocorrelation and partial autocorrelation functions to improve neural networks models on univariate time series forecasting. In The 2012 International Joint Conference on Neural Networks (IJCNN) (pp. 1-8). IEEE.
https://doi.org/10.1109/IJCNN.2012.6252470
Forbanka, D. N., Stemele, M. A., Heshula, L. U. N. P., Dzemo, W. D., Kotey, D. A., Taruvinga, A., & Tshivhandekano, P. G. (2023). Distribution and fixed-precision sampling plans for diamondback moth (Lepidoptera: Plutellidae), on winter–spring
cabbage. Journal of Economic Entomology,
116(5), 1551-1559.
https://doi.org/10.1093/jee/toad156
Heath, R. A. (2014). Nonlinear Dynamics: Techniques and Applications in Psychology. Psychology Press. United Kingdom. 356 pp.
Henson, S. M., Costantino, R. F., Cushing, J. M., Dennis, B., & Desharnais, R. A. (1999). Multiple attractors, saddles, and population dynamics in periodic habitats.
Bulletin of Mathematical Biology,
61, 1121-1149.
https://doi.org/10.1006/bulm.1999.0136
Hines, J., van der Putten, W. H., De Deyn, G. B., Wagg, C., Voigt, W., Mulder, C., Minden, V., Engelhardt, K., Scherber, C., & Eisenhauer, N. (2015). Towards an integration of biodiversity-ecosystem functioning and food web theory to evaluate relationships between multiple ecosystem services.
In Advances in Ecological Research Academic Press, 53, 161-199 pp.
https://doi.org/10.1016/bs.aecr.2015.09.001
Hirano, H., & Takemoto, K. (2019). Difficulty in inferring microbial community structure based on co-occurrence network approaches.
BMC bioinformatics,
20(1), 1-14.
https://doi.org/10.1186/s12859-019-2915-1
Kawatsu, K., Ushio, M., van Veen, F. F., & Kondoh, M. (2021). Are networks of trophic interactions sufficient for understanding the dynamics of multi‐trophic communities? Analysis of a tri‐trophic insect food‐web time‐series.
Ecology Letters,
24(3), 543-552.
https://doi.org/10.1111/ele.13672
Kéfi, S., Miele, V., Wieters, E. A., Navarrete, S. A., & Berlow, E. L. (2016). How structured is the entangled bank? The surprisingly simple organization of multiplex ecological networks leads to increased persistence and resilience.
PLoS Biology,
14(8), e1002527.
https://doi.org/10.1371/journal.pbio.1002527
Kim, D., Cho, M., Jeon, H., Yiem, M., & Lee, J. (2000). Population trends and temperature-dependent development of pear psylla, Cacopsylla pyricola (Foerster)(Homoptera: Psyllidae). Korean Journal of Applied Entomology, 39(2), 73-82.
Liu, D., Yu, J., Macchiarella, N. D., & Vincenzi, D. A. (2008). Simulation fidelity. In Human factors in simulation and training. CRC Press, United State, pp. 91-108.
Liu, S. S., Chen, F. Z., & Zalucki, M. P. (2002). Development and survival of the diamondback moth (Lepidoptera: Plutellidae) at constant and alternating temperatures
. Environmental Entomology,
31(2), 221-231.
https://doi.org/10.1603/0046-225X-31.2.221
Machlitt, D. (1998). Persea mite on avocados: Quick field counting method. Subtropcal Fruit News, 6, 1-4.
Marcasan, L. I. S., Hulujan, I. B., Florian, T., Somsai, P. A., Militaru, M., Sestras, A. F., Moldovan, I. C., Crisan, I. A., Roman, I., & Sestras, R. E. (2022). The importance of assessing the population structure and biology of psylla species for pest monitoring and management in pear orchards. Notulae
Botanicae Horti Agrobotanici Cluj-Napoca,
50(4), 13022.
https://doi.org/10.15835/nbha50313022
Moore, J. C., de Ruiter, P. C., McCann, K. S., Wolters, V., Gellner, G., & Serván, C. (Eds.). (2017). Adaptive Food Webs: Stability and Transitions of Real and Model Ecosystems. Cambridge University Press, United Kingdom. 326 pp.
https://doi.org/10.1017/9781316871867
Nelson, B. K. (1998). Time series analysis using autoregressive integrated moving average (ARIMA) models. Academic Emergency Medicine, 5(7), 739-744. https://doi.org/10.1111/j.1553-2712.1998.tb02493.x
Palma, G. R., Godoy, W. A., Engel, E., Lau, D., Galvan, E., Mason, O., Souza, L. E., Ribeiro, F. T., Miranda, J. R., & Moral, R. A. (2023). Pattern-based prediction of population outbreaks.
Ecological Informatics,
77, 102220.
https://doi.org/10.1016/j.ecoinf.2023.102220
Pasqualini, E., Civolani, S., Musacchi, S., Ancarani, V., Dondini, L., Robert, P., & Baronio, P. (2006). Cacopsylla pyri behaviour on new pear selections for host resistance programs. Bulletin of Insectology, 59(1), 27-37.
Sanchez, J. A., & Ortín-Angulo, M. C. (2012). Abundance and population dynamics of
Cacopsylla pyri (Hemiptera: Psyllidae) and its potential natural enemies in pear orchards in southern Spain.
Crop Protection,
32, 24-29.
https://doi.org/10.1016/j.cropro.2011.11.003
Scutareanu, P., Lingeman, R., Drukker, B., & Sabelis, M. W. (1999). Cross‐correlation analysis of fluctuations in local populations of pear psyllids and anthocorid bugs.
Ecological Entomology,
24(3), 354-363.
https://doi.org/10.1046/j.1365-2311.1999.00199.x
Soukhovolsky, V., Kovalev, A., Ivanova, Y., & Tarasova, O. (2023). Autoregression, first order phase transition, and stochastic resonance: A comparison of three models for forest insect outbreaks.
Mathematics,
11(19), 4212.
https://doi.org/10.3390/math11194212
Stankevych, S. V., Biletskyj, Y. M., Zabrodina, I. V., Yevtushenko, M. D., Dolya, M. M., Lezhenina, I. P., Tymchyshyn, O. V., Dmytrenko, V. O., Petrova, O. M., & Klymenko, I. V. (2020). Cycle populations dynamics of harmful insects.
Ukrainian Journal of Ecology,
10(3), 147-161.
https://doi.org/10.15421/2020_148.
Wong, T. T., & Madsen, H. F. (1967). Laboratory and field studies on the seasonal forms of pear psylla in northern California.
Journal of Economic Entomology,
60(1), 163-168.
https://doi.org/10.1093/jee/60.1.163
Yeh, C. K., Rice, G., & Dubin, J. A. (2023). Functional spherical autocorrelation: A robust estimate of the autocorrelation of a functional time series.
Electronic Journal of Statistics,
17(1), 650-687.
https://doi.org/10.1214/23-EJS2112
Send comment about this article