اثر تنش غیر زیستی میکروپلاستیک پلی‌اتیلن بر جوانه‌زنی بذر و رشد گیاهچه گندم (Triticum aestivum L.)

نوع مقاله : مقاله پژوهشی

نویسندگان

بخش زیست شناسی، دانشکده علوم، دانشگاه شیراز، شیراز، ایران

چکیده

در سال‌های اخیر، آلودگی میکروپلاستیکی به‌‌ویژه پلی‌اتیلن، به‌عنوان یک تهدید جدی برای بوم‌نظام‌های کشاورزی شناخته شده است. در این پژوهش، اثرات میکروپلاستیک پلی‌اتیلن بر جوانه‌زنی بذر و رشد گیاهچه گندم (Triticum aestivum L.) بررسی شد. این آزمایش در قالب طرح کاملاً تصادفی در چهار سطح غلظتی (0، 1، 10 و 100 میلی‌گرم بر لیتر) و چهار تکرار انجام گردید. شاخص‌های فیزیولوژیکی و بیوشیمیایی شامل درصد جوانه‌زنی، رشد ریشه و ساقه، زیست‌توده، رنگدانه‌های فتوسنتزی و محتوای پرولین ارزیابی شد. نتایج نشان داد که غلظت‌های بالا (10 و 100 میلی‌گرم بر لیتر) به‌‌طور معنی‌داری جوانه‌زنی را کاهش دادند، در‌حالی‌که در غلظت پایین (یک میلی‌گرم بر لیتر) تغییر محسوسی مشاهده نشد. رشد ریشه در تمام غلظت‌ها افزایش یافت، امّا رشد ساقه در غلظت‌های متوسط و بالا کاهش نشان داد. زیست‌توده ریشه افزایش و زیست‌توده ساقه کاهش یافت که نشان‌دهنده پاسخ‌های متفاوت اندام‌های گیاه به میکروپلاستیک‌ها است. میزان کلروفیل در غلظت متوسط، افزایش و در غلظت بالا، کاهش یافت که احتمالاً ناشی از تنش‌ اکسیداتیو است. الگوی تغییرات کاروتنوئید مشابه بود. همچنین پرولین در غلظت‌های بالا افزایش یافت که بیانگر فعال‌سازی سازوکار‌های دفاعی گیاه است. این نتایج نشان می‌دهد که آلودگی میکروپلاستیکی می‌تواند اثرات منفی بر رشد و سلامت گیاهان زراعی داشته باشد.

کلیدواژه‌ها

موضوعات


©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

  1. Andrady, A.L. (2011). Microplastics in the marine environment. Marine Pollution Bulletin, 62(8), 1596-1605. https://doi.org/10.1016/j.marpolbul.2011.05.030

    1. Arnon, D.I. (1949). Copper enzymes in isolated chloroplast polyphenol oxidase in Beta vulgaris. Plant Physiology, 24, 1-15. https://doi.org/10.1104/pp.24.1.1
    2. Boonsong, P., Ussawarujikulchai, A., Prapagdee, B., & Pansak, W. (2025). Contamination of microplastics in greenhouse soil subjected to plastic mulching. Environmental Technology & Innovation, 37, 103991. https://doi.org/10.1016/j.eti.2024.103991
    3. Chen, F., Aqeel, M., Khalid, N., Nazir, A., Irshad, M.K., Akbar, M.U., Alzuaibr, F.M., Ma, & JNoman, A. (2023). Interactive effects of polystyrene microplastics and Pb on growth and phytochemicals in mung bean (Vigna radiata L.). Journal of Hazardous Materials, 449, 130966. https://doi.org/https://doi.org/10.1016/j.jhazmat.2023.130966
    4. Chen Y, Li, Y, Liang, X, Lu, S, Ren, J, Zhang, Y, Han, Z, Gao, BSun, K. (2024). Effects of microplastics on soil carbon pool and terrestrial plant performance. Carbon Research, 3(1), 1-23. https://doi.org/10.1007/s44246-024-00124-1
    5. De Silva YSK, Rajagopalan, UM, Kadono, H. (2021). Microplastics on the growth of plants and seed germination in aquatic and terrestrial ecosystems. Global Journal of Environmental Science & Management (GJESM), 1, 7(3).
    6. Gao W, Wu, D, Zhang, D, Geng, Z, Tong, M, Duan, Y, Xia, W, Chu, JYao, X. (2024). Comparative analysis of the effects of microplastics and nitrogen on maize and wheat: Growth, redox homeostasis, photosynthesis, and AsA-GSH cycle. Science of The Total Environment, 932, 172555. https://doi.org/https://doi.org/10.1016/j.scitotenv.2024.172555
    7. Geyer R, Jambeck, JRLaw, KL. (2017). Production, use, and fate of all plastics ever made. Science advances, 3(7), e1700782. https://doi.org/10.1126/sciadv.1700782
    8. Gong W, Zhang, W, Jiang, M, Li, S, Liang, G, Bu, Q, Xu, L, Zhu, HLu, A. (2021). Species-dependent response of food crops to polystyrene nanoplastics and microplastics. Science of the Total Environment, 796, 148750. https://doi.org/10.1016/j.scitotenv.2021.148750
    9. Horton AA, Walton, A, Spurgeon, DJ, Lahive, ESvendsen, C. (2017). Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Science of the Total Environment, 586, 127-141. https://doi.org/10.1016/j.scitotenv.2017.01.190
    10. Hurley R, Binda, G, Briassoulis, D, Carroccio, SC, Cerruti, P, Convertino, F, Dvořáková, D, Kernchen, S, Laforsch, CLöder, MG. (2024). Production and characterisation of environmentally relevant microplastic test materials derived from agricultural plastics. Science of the Total Environment, 946, 174325. https://doi.org/10.1016/j.scitotenv.2024.174325
    11. Iqbal B, Zhao, X, Khan, KY, Javed, Q, Nazar, M, Khan, I, Zhao, X, Li, GDu, D. (2024). Microplastics meet invasive plants: Unraveling the ecological hazards to agroecosystems. Science of the Total Environment, 906, 167756. https://doi.org/10.1016/j.scitotenv.2023.167756
    12. Jadhav B Medyńska-Juraszek, A. (2024). Microplastic and Nanoplastic in Crops: Possible Adverse Effects to Crop Production and Contaminant Transfer in the Food Chain. Plants, 13(17), 2526. https://doi.org/10.3390/plants13172526
    13. Jia L, Liu, L, Zhang, Y, Fu, W, Liu, X, Wang, Q, Tanveer, MHuang, L. (2023). Microplastic stress in plants: effects on plant growth and their remediations. Frontiers in plant science, 14, 1226484. https://doi.org/10.3389/fpls.2023.1226484
    14. Kumar D, Biswas, JK, Mulla, SI, Singh, R, Shukla, R, Ahanger, MA, Shekhawat, GS, Verma, KK, Siddiqui, MWSeth, CS. (2024). Micro and nanoplastics pollution: Sources, distribution, uptake in plants, toxicological effects, and innovative remediation strategies for environmental sustainability. Plant Physiology and Biochemistry, 108795. https://doi.org/10.1016/j.plaphy.2024.108795
    15. Li F, Huang, D, Wang, G, Cheng, M, Chen, H, Zhou, W, Xiao, R, Li, R, Du, LXu, W. (2024). Microplastics/nanoplastics in porous media: Key factors controlling their transport and retention behaviors. Science of The Total Environment, 20;926:171658. https://doi.org/10.1016/j.scitotenv.2024.171658
    16. Li R, Tu, C, Li, L, Wang, X, Yang, J, Feng, Y, Zhu, X, Fan, QLuo, Y. (2023). Visual tracking of label-free microplastics in wheat seedlings and their effects on crop growth and physiology. Journal of Hazardous Materials, 456, 131675. https://doi.org/https://doi.org/10.1016/j.jhazmat.2023.131675
    17. Li X, Wang, R, Dai, W, Luan, YLi, J. (2023). Impacts of micro (nano) plastics on terrestrial plants: germination, growth, and litter. Plants, 12(20), 3554. https://doi.org/10.3390/plants12203554
    18. Lian J, Wu, J, Xiong, H, Zeb, A, Yang, T, Su, X, Su, LLiu, W. (2020). Impact of polystyrene nanoplastics (PSNPs) on seed germination and seedling growth of wheat (Triticum aestivum L.). Journal of hazardous materials, 385, 121620. https://doi.org/10.1016/j.jhazmat.2019.121620
    19. Liang R, Zhang, C, Zhang, R, Li, Q, Liu, HWang, X-X. (2024). Effects of microplastics derived from biodegradable mulch film on different plant species growth and soil properties. Science of The Total Environment, 948, 174899. https://doi.org/10.1016/j.scitotenv.2024.174899
    20. Pignattelli S, Broccoli, ARenzi, M. (2020). Physiological responses of garden cress (L. sativum) to different types of microplastics. Science of The Total Environment, 727, 138609. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.138609
    21. Rillig MC, Lehmann, A, de Souza Machado, AAYang, G. (2019). Microplastic effects on plants. New phytologist, 223(3), 1066-1070. https://doi.org/10.1111/nph.15794
    22. Rochman CM, Brookson, C, Bikker, J, Djuric, N, Earn, A, Bucci, K, Athey, S, Huntington, A, McIlwraith, HMunno, K. (2019). Rethinking microplastics as a diverse contaminant suite. Environmental toxicology and chemistry, 38(4), 703-711. https://doi.org/10.1002/etc.4371
    23. Shiferaw B, Smale, M, Braun, HJ, Duveiller, E, Reynolds, M, Muricho, G. (2013). Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food security, 5, 291-317. https://doi.org/10.1007/s12571-013-0263-y
    24. Szabados L, Savoure, A. (2010). Proline: a multifunctional amino acid. Trends in plant science, 15(2), 89-97. https://doi.org/10.1016/j.tplants.2009.11.009
    25. Tian L, Jinjin, C, Ji, R, Ma, YYu, X. (2022). Microplastics in agricultural soils: sources, effects, and their fate. Current Opinion in Environmental Science & Health, 25, 100311. https://doi.org/10.1016/j.coesh.2021.100311
    26. Yan Y, Yang, H, Du, Y, Li, XLi, X. (2024). Effects and molecular mechanisms of polyethylene microplastic oxidation on wheat grain quality. Journal of Hazardous Materials, 5;474:134816. https://doi.org/10.1016/j.jhazmat.2024.134816
    27. Yao Z, Seong, H.J, Jang, Y.S. (2022). Environmental toxicity and decomposition of polyethylene. Ecotoxicology and Environmental Safety, 242, 113933. https://doi.org/10.1016/j.ecoenv.2022.113933
    28. Zhou Y, Wang, J, Zou, M, Jia, Z, Zhou, SLi, Y. (2020). Microplastics in soils: A review of methods, occurrence, fate, transport, ecological and environmental risks. Science of the Total Environment, 748, 141368. https://doi.org/10.1016/j.scitotenv.2020.141368

     

CAPTCHA Image