اثر دما و تنش خشکی بر ویژگی‌های جوانه‌زنی و دماهای کاردینال علف‌هرز مهاجم شمعدانی وحشی (Geranium robertianum)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه اگروتکنولوژی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

2 جهاد کشاورزی شهرستان قوچان، قوچان، ایران.

چکیده

به‌منظور بررسی تأثیر دما و تنش خشکی بر جوانه‌زنی بذر علف‌هرز شمعدانی وحشی (Geranium robertianum) آزمایشی به‌صورت فاکتوریل در قالب طرح کاملا تصادفی با 8 سطح دمای ثابت (5، 10، 15، 20، 25، 30، 35، 40 درجه سانتی‌گراد) و 6 سطح تنش خشکی (0 ،2/0-، 4/0-، 6/0-، 8/0-، 1- مگاپاسکال) در 4 تکرار انجام شد. برای اعمال تنش خشکی از پلی‌اتیلن گلایکول 6000 استفاده شد. در این آزمایش، از پتری­دیش­های حاوی کاغذ صافی واتمن با قطر 7 سانتی­متر استفاده و در هر پتری 25 بذر قرار گرفت. سپس پتری­دیش­ها در ژرمیناتور در معرض تیمارهای دمایی ذکر شده و رژیم روشنایی (14 ساعت روشنایی 250 میکرومول بر متر مربع بر ثانیه) قرار گرفتند. برای تحلیل نتایج آزمایش از شاخص­هایی مانند درصد، سرعت جوانه‌زنی و مدت زمان رسیدن به 50 درصد جوانه‌زنی استفاده شد. برای تعیین دمای کاردینال از مدل رگرسیونی دندانه‌ای استفاده شد. نتایج نشان داد که شمعدانی وحشی در دمای ثابت 20 درجه سانتی­گراد دارای بیشترین درصد (98 درصد) و سرعت جوانه­زنی (019/6 بذر در روز) در شرایط بدون تنش (پتانسیل آب صفر) بود. همچنین در دماهای 35 و 40 درجه سانتی­گراد جوانه­زنی متوقف شد. مدل رگرسیونی سه پارامتره از دقت خوبی جهت توصیف روند درصد جوانه­زنی تجمعی شمعدانی برخوردار بود. براساس نتایج آزمایش با افزایش تنش خشکی (تا 8/0- مگاپاسکال)، درصد و سرعت جوانه­زنی به‌طور معنی­داری کاهش و در 1- مگاپاسکال، جوانه­زنی متوقف شد. در پتانسیل صفر (شرایط بدون تنش) دمای کمینه، بهینه اول، بهینه دوم و بیشینه به‌ترتیب 12/1، 83/18، 76/22 و 09/35 درجه سانتی­گراد تعیین شد و با افزایش پتانسیل اسمزی تا 8/0- مگاپاسکال، دمای کمینه از 12/1 به 96/4 درجه سانتی­گراد، دماهای بهینه اول از 83/18 تا 76/22 درجه سانتی­گراد و دماهای بهینه دوم از 51/10 تا 63/20 درجه سانتی­گراد و دمای بیشینه از 09/35 به 48/34 درجه سانتی­گراد تغییر یافت. با توجه به نتایج آزمایش، جوانه­زنی شمعدانی وحشی در محدوده­های دمایی 17 تا 22 درجه سانتی‌گراد متحمل به تنش­های خشکی متوسط (6/0- مگاپاسکال) می‌باشد. به‌طور کلی، با توجه با پایین بودن دمای کمینه، احتمال جوانه­زنی و طغیان این علف‌هرز در فصول سردتر، بیشتر خواهد بود و با توجه به کاهش جوانه‌زنی به تنش خشکی، می­توان کاشت گیاهان زراعی متحمل به خشکی را در برنامه­های مدیریتی قرار داد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of Temperature and Drought Stress on Germination Characteristics and Determination of Cardinal Temperatures of Invasive Weed Herb-Robert (Geranium robertianum L.)

نویسندگان [English]

  • Abdollah Jalili 1
  • Ebrahim Izadi Darbandi 1
  • Mehdi Rastgoo 1
  • esmail ebrahimi 2
1 Department of Agrotechnology, Faculty of Agriculture, Fredowsi University of Mashhad, Mashhad, Iran
2 Agricultural Management of Ghochan, Ghochan, Iran
چکیده [English]

Introduction
 Seed germination is the first and most important stage of plant establishment and subsequent successful competition, which is affected by genetic and environmental factors. Temperature and soil water potential are the most important environmental factors. Knowledge of environmental factors controlling seed germination provides the possibility of predicting weed infestation. By obtaining information about the temperature and moisture requirements of weeds, it is possible to manage them successfully. In recent years, the weed of herb-robert has been raised as an invasive weed in rapeseed fields in Mazandaran and Golestan provinces. To investigate the relationship between temperature and germination rate, various cardinal models such as dent-like, segmented, and beta have been used. The purpose of this research is to determine cardinal temperatures in herb-Robert and investigate the role of temperature and drought stress on some of its germination characteristics.
 
Materials and Methods
To investigate the effect of temperature and drought stress on the germination of herb-Robert (Geranium robertianum L.) seeds, this study was conducted as a factorial experiment within a completely randomized design. The experiment included 8 levels of constant temperature (5, 10, 15, 20, 25, 30, 35, 40 °C) and drought stress in 6 levels (-0.2, 4 -0.0, -0.6, -0.8, -1 MPa) with 4 replications. Germinated seeds were counted up to 14 days after germination. Then indicators such as percentage, germination rate and time to reach 50% germination were calculated. A dent-like regression model was used to determine the cardinal temperature.
 
Results and Discussion
The results showed that the constant temperature of 20°C has the highest percentage (98%) and germination rate (6.019) under non-stress conditions (zero water potential). Also, germination was stopped at temperatures of 35 and 40 °C. The three-parameters regression model had good accuracy to describe the trend of cumulative seed germination percentage of herb-Robert. The results also showed that with the increase of drought stress, the percentage and rate of germination decreased and at potentials higher than -0.8 MPa, germination stopped. At zero potential (non-stress conditions), the minimum, first optimum, second optimum and maximum temperatures were determined as 1.12, 18.83, 22.76 and 35.09 °C, respectively. With an increase from zero to water potential up to -0.8 MPa, minimum temperature from 1.12 to 4.96, optimal temperatures from 18.83 to 22.76 to 10.51 to 20.63 and maximum temperature from 35.09 changed to 34.48 °C. The results showed that, in each osmotic potential, with increasing temperature, the time to reach 50% germination decreased. On the other hand, with the increase in osmotic potential, this time increased, which indicates a decrease in germination speed. In general, the time to reach 50% germination from 0 to 0.4 MPa potentials started from 6 days and decreased to 3 days. While at higher potentials (-0.6 and -0.8 MPa) it varies in the range of 6 to 8 days. These results indicate that the germination ability of herb-Robert increases in the temperature range of 15 to 20 degrees Celsius at any water potential. Based on the results of this experiment, there was no germination at the osmotic potential of 1 MPa. In general, wild geranium is more tolerant to moderate drought stress (up to -0.6 MPa) in the temperature range of 17 to 22 degrees Celsius, and with increasing drought stress, at lower temperatures (10 to 20 degrees Celsius) its presence will be more.
 
Conclusion
 Based on the results of this study, the highest percentage and rate of seed germination occurred at 20°C. There was no seed germination at temperatures of 35 and 40 °C and water potential of -1 MPa. With the increase of water potential, the minimum temperature increased, the optimal temperatures decreased and the maximum temperature decreased slightly. In general, due to the low minimum temperature, the probability of germination and outbreak of this weed will be higher in colder seasons.

کلیدواژه‌ها [English]

  • Dent-like model
  • Germination rate
  • Optimal temperature

©2023 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source

  1. Alvarado, V.Y., & Bradford, K.J. (2002). A hydrothermal time model explains the cardinal temperatures for seed germination. Plant, Cell and Environment, 25(8), 1061–1069. https://doi.org/10.1046/j.1365-3040.2002.00894.x
  2. Ashraf,, & Harris, P. (2004). Potential biochemical indicators of salinity tolerance in plants. Plant Science166(1), 3–16. https://doi.org/10.1016/j.plantsci.2003.10.024
  3. Bradford, K.J. (2002). Applications of hydrothermal time to quantifying and modeling seed germination and dormancy. Weed Science50(2), 248–260. https://doi.org/10.1614/0043-1745(2002)050
  4. Buhler, D.D. (2000). Theoretical and practice challenges to an IPM approach to weed management. Journal of Weed Science, 48(3), 274-280. https://doi.org/10.1614/0043-1745(2000)048[0274:TAPCTA]2.0.CO;2
  5. Chachalis, D., & Reddy, K.N. (2000). Factors affecting Campsis radicans seed germination and seedling emergence. Weed Science48(2), 212–216. https://doi.org/10.1614/0043-1745(2000)048
  6. Chauhan, B.S., Gill, G., & Preston, C. (2006). Factors affecting seed germination of annual sowthistle (Sonchus olevaceus) in southern Australia. Journal of Weed Science, 54, 854-860. https://doi.org/10.1614/WS-06-047R.1
  7. Chejara, V.K., Kristiansen, P., Whalley, R.D.B., Sindel, B.M., & Nadolny, C. (2008). Factors affecting germination of Coolatai grass (Hyparrhenia hirta). Weed Science56(4), 543–548. https://doi.org/10.1614/ws-07-163.1
  8. Copeland, L.O., & McDonald, M.B. (1999). Principles of seed science and technology. In Springer eBooks. https://doi.org/10.1007/978-1-4615-1783-2
  9. Deng, M., & Cornu, D. (1992). Maturation and germination of walnut somatic embryos. Plant Cell, Tissue and Organ Culture,28(2), 195–202. https://doi.org/10.1007/bf00055517
  10. Derakhshan, A., & Gherekhloo, J. (2013). Factors affecting Cyperus difformis seed germination and seedling emergence. Planta Daninha31(4), 823–832. https://doi.org/10.1590/s0100-83582013000400008
  11. Diayanat, M. (2018). Effect of temperature and drought stress on germination of Slender Amaranth (Amaranthus viridis) and Prostrate Pigweed (Amaranthus blitoides S. Watson) seeds. Journal of Plant Protection, 31(4), 690-699. (In Persian with English abstract). https://doi.org/10.22067/JPP.V31I4.61569
  12. Diayanat, M. (2019). Prediction of cardinal temperature by nonlinear regression models in carrot (Daucus carota) and its three common weed species. Iranian Journal of Seed Science and Technology, 8(1), 175-184. (In Persian with English abstract)
  13. Edalat, M., & Kazemeini, S.A. (2013). Estimating cardinal temperatures of tumble mustard (Sisymbrium altissimum) and slender foxtail (Alopecurus myosuroides) seed germinations. The 5th Iranian Weed Science Congress. Tehran University. Pp: 280-283. (In Persian with English abstract)
  14. Ghaderifar, A., Alimagham, S.M., Rezaee Moghadam, H.V., & Haghighi, M. (2012). Effects of environmental factors on germination and emergence of rye crops in wheat fields as wild plant. Electronic Journal of Crop Production, 5(4), 133-121. (In Persian with English abstract)
  15. HajiAbaee, H., Rahimian Mashhadi, H., Haqiqi, A., & MohammadAmin Qassaam, M.A. (2015). Assessing the cardinal temperature for the germination of Galium aparine and Sinapis arvensis L. The 6th Iranian weed science congress. Birjand. 21-23 September. P 51-55. (In Persian with English abstract)
  16. Hamayun, M., Khan, S., Shinwari, Z.K., Khan, A.L., Ahmad, N., Lee, I., & Pakistan, K. (2010). Effect of polyethylene glycol induced drought stress on physio-hormonal attributes of soybean. Pakistan Journal of Botany42(2), 977–986.
  17. Hashemi, A., Barooti, SH., & Tavakol Afshari, R. (2016). Determine the cardinal temperatures of seed germination in Chrysanthemum maximum. Iranian Journal of Seed Science and Technology, 2, 77-84. (In Persian with English abstract)
  18. Hejazi, A. (1994). Seed technology. Tehran university press. 345 p. (In Persian with English abstract)
  19. Hoseini, M., Mojab, M., & Zamani, Gh. (2012). Evaluation wild barley (Hordeum spontaneum) barley grass (Hordium murinum L.) and hoary cress (Cardaria draba L.) germination in different temperatures. p. 108. In proceeding 4th Iranian Weed Science. Congress., 6-7 February, 2004. Ahvaz, Iran. (In Persian with English abstract)
  20. Jami-Al Ahmadi, M., & Kafi, M. (2007). Cardinal temperatures for germination of Kochia scoparia (L.). Journal of Arid Environments68(2), 308–314. https://doi.org/10.1016/j.jaridenv.2006.05.006
  21. Kamkar, B., Ahmadi. M., Soltani, A., & Zeinali, E. (2008). Evaluating non-linear regression models to describe response of wheat emergence rate to temperature. Seed Science and Technology, 2, 53-57. (In Persian with English abstract). https://doi.org/10.22059/jci.2015.54799
  22. Kamkar, B., Al-Alahmadi, M.J., Damghani, A.M., & Villalobos, F.J. (2012). Quantification of the cardinal temperatures and thermal time requirement of opium poppy (Papaver somniferum) seeds to germinate using non-linear regression models. Industrial Crops and Products35(1), 192–198. https://doi.org/10.1016/j.indcrop.2011.06.033
  23. Kazerooni-Monfared, A., Takasi, S., Banaeeian, M., Ghanbari, A., Rahimian Mashadi, M., & Pernilson, K. (2013). Effects of temperature and osmotic potential on the seed germination of Orobanche aegyptiaca. Journal of Applied Research of Plant Ecophysiology, 1(1), 33-50. (In Persian with English abstract)
  24. Keshavarzi , M., Taghipour , E., & Najafian, E. (2013). Morphological study of pollens of some weedy Erodium species, in Iran. The 5th Iranian weed sceince congress. Tehran. September. P 354-356. (In Persian with English abstract)
  25. Khakshor Moghadam, Z., lahouti, M., & Ganjali, A. (2011). Effects of drought stress induced by polyethylene glycol on germination and morphophysiological characteristics of Dill (Anethum graveolens). Journal of Horticultural Science, 25(2), 185-193. (In Persian with English abstract)
  26. Kiyani, E. (2014). The effect of some environmental factors on seed germination of morning glory (Ipomoea). M.Sc. Thesis. Azad University of Gorgan, Iran. 111 p. (In Persian with English abstract)
  27. Maguire, J.D. (1962). Seed of germination – aid in selection and evaluation for seedling emergence and vigour. Journal of Crop Science, 2, 176-177. https://doi.org/10.2135/cropsci1962. 0011183X000200020033x
  28. Mahmoodi, A., Soltani, E., & Barani, H. (2008). Germination response to temperature of snail medic (Medicago scutellata). Iranian Society of Agronomy and Plant Breeding, 1(1), 54-63. (In Persian with English abstract)
  29. Michel, B.E., & Kaufmann, M.R. (1973). The osmotic potential of polyethylene glycol 6000. Plant Physiology51(5), 914–916. https://doi.org/10.1104/pp.51.5.914
  30. Moradi, A., Ghanbari, A., Rashedmohasel, M.H., & Izadi darbandi, A. (2015). Determination of the cardinal temperatures of Alhaji pseudalhagi. Journal of Plant Protection, 29(2), 283-290. (In Persian with English abstract)
  31. Nejadhasan, B. (2013). Effect of some environmental factors on seed germination of Arugula (Eruca sativa Mill). M.Sc Thesis on Agronomy, Gorgan University of Agricultural Science and Natural Resources. 102 p. (In Persian with English abstract)
  32. Nosratti, I., Amiri, S., Bagheri, A., & Chauhan, B.S. (2017). Environmental factors affecting seed germination and seedling emergence of Foxtail Sophora (Sophora alopecuroides). Weed Science66(1), 71–77. https://doi.org/10.1017/wsc.2017.35
  33. Oliveira, M.J., & Norsworthy, J.K. (2006). Pitted morningglory (Ipomoea lacunosa) germination and emergence as affected by environmental factors and seeding depth. Weed Science54(5), 910–916. https://doi.org/10.1614/ws-06-068r.1.1
  34. Poortousi, N., Rashed Mohasel, M.H., & Ezadi Darbandi, E. )2008(. Germination characteristics and cardinal temperature of lambsquarter, purselane and crabgrass. Iranian Journal of Field Crops Research, 6(2), 255-261. (In Persian with English abstract)
  35. Rahimi, Z., & Kafi, M. (2009). Effect of different levels of drought on germination characteristics of Purslane (Portulaca oleracea). Journal of Environmental Stresses in Agricultural Science, 2(1), 87-91. (In Persian with English abstract)
  36. Ray, J., Creamer, R., Schroeder, J., & Murray, L.W. (2005). Moisture and temperature requirements for London rocket (Sisymbrium irio) emergence. Weed Science53(2), 187–192. https://doi.org/10.1614/ws-04-150r1
  37. Riemens Scheepens, P.C., & Vander Weide, R.Y. (2004). Dormancy, germination and emergence of weed seeds, with emphasis on influence of light. Plant Research International, 302, 1-12.
  38. Rizzardi, M.A., Luiz, A.R., Roman, E.S., & Vargas, L. (2009). Effect of cardinal temperature and water potential on morning glory (Ipomoea triloba) seed germination. Planta Daninha, 27(1), 13-21. https://doi.org/1590/S0100-83582009000100003
  39. Sabouri Rad, S., Kafi, M., Nezami, A., & Bannayan Aval, M. (2012). Study on seed germination behavior of Kochia scoparia Schard in response to temperature and water potential. Iranian Journal of Range and Desert Reseach, 18(4): 578-592. (In Persian with English abstract)
  40. Shirdel, M., Siahmarguee, A., & Yones-Abadi, M. (2016). The effect of temperature and water potential on seed germination of Asian spiderflower (Cleome viscose): As invasive weed in soybean fields in Golestan province. Journal of Plant Protection, 3(2): 292-303. (In Persian with English abstract)
  41. Sohrabi, S., Ghanbari, A., Rashed Mohasel, M.H., Nasiri Mahalati, M., & Gharekhlou, J. (2011). Effect of temperature, drought and salinity on the seed germination of invasive weed wildmelons (Cucumis melo). The 4th weed science congress of Iran. Khozestan, Pp: 259-261. (In Persian with English abstract)
  42. Sohrabi, S., Gherekhloo, J., & Rashed Mohassel, M.H. (2017). Plant invasion and invasive weeds of Iran. Jahad Daneshgahi of Mashhad.
  43. Soltani, E., Oveisi, M., Soltani, A., Galeshi, S., Ghaderi-Far, F., & Zeinali, E. (2014). Seed germination modeling of volunteer canola as affected by temperature and water potential: hydrothermal time model. Weed research Journal, 6(1), 23-38. (In Persian with English abstract)
  44. Soltani, E., Soltani, A., Galeshi, S., Ghaderi-Far, F., & Zeinali, E. (2013). Seed germination modeling of wild mustard (Sinapis arvensis) as affected by temperature and water potential: hydrothermal time model. Journal of Plant Production, 1, 19-33. (In Persian with English abstract)
  45. Taassob-Shirazi, M., Forouzesh, S., Zare, A., & Rahimian-Mashhsdi, H. (2013). Germination phonology of invasive plant (Amsinckia menziesii). The 5th Iranian Weed Science Congress, Tehran University. Pp: 448-451. (In Persian with English abstract)
  46. Tabrizi, L., Koocheki, A., Nassiri Mahallati, M., & Rezvani Moghaddam, P. (2007). Germination behaviour of cultivated and natural stand seeds of Khorasan thyme (Thymus transcaspicus Klokov) with application of regression models. Iranian Journal of Field Crops Research, 4(2), 249-257. (In Persian with English abstract)
  47. Takasi, S., Al-Ebrahim, M.T., Kazeroni-Monfared, A., & Rashed Mohasel, M.H. (2009). Effect of temperature, light, flooding and plant in depth on germination percentage of wildlettuce weed (Lactuca serriola). The 3th Weed Science Congress, Babolsar. Pp: 33-36. (In Persian with English abstract)
  48. Torabi, B. (2003). Prediction of physiological development stages in chickpea. M.Sc. thesis in Agronomy. Gorgan University of Agriculture and Natural Sciences. (In Persian with English abstract)
  49. Zahed, S., Gherekhloo, J., & Baqrany, N. (2013). Prostrate spurge seed germination response to salinity and drought caused by various concentrations of poly ethylene glycol 6000. The 5th Iranian weed science congress. Tehran. September. P 476-479. (In Persian with English abstract)
  50. Zare, A., Deris, F.Z., & Karimi, Z. (2021). Influence of environmental factors on seed germination characteristics of invasive weed yellow starthistle (Centaurea solstitialis). Iranian Journal of Seed Science and Technology, 9(4), 111-122. (In Persian with English abstract)
  51. Zhou, J., Tao, B., Deckard, E.L., & Messersmith, C.G. (2006). Garden huckleberry (Solanum melanocerasium) germination, seed survival, and response to herbicides. Weed Science54(3), 478–483. https://doi.org/10.1614/ws-05-096r1.1
CAPTCHA Image