مقایسه تحلیلی فلور علف‌های هرز مزارع سویا ( Glycine max L.) در دو منطقه کوهستانی و دشت شرق مازندران

نوع مقاله : مقالات پژوهشی

نویسنده

دانشگاه آزاد اسلامی واحد قائمشهر

چکیده

مطالعه نحوه پراکنش علف­های هرز برای ارزیابی راهبردهای زراعی در گذشته  و طراحی رهیافت­های مدیریتی آینده علف­های هرز مفید می‌باشد. بدین سبب این آزمایش به منظور بررسی تنوع گونه­ای، کارکردی و ساختار جوامع علف­های هرز مزارع سویا در دو منطقه دشت و کوهستانی شهرستان‌های نکا و گلوگاه، واقع در شرق استان مازندران در سطح 2820 هکتار و در مرحله پیدایش گره رویشی چهارم در سال 1397 انجام شد. نمونه‌برداری به روش سیستماتیک با استفاده از کادرهای 5/0×5/0 متر انجام و تراکم و درصد فراوانی توزیع علف­های هرز به تفکیک جنس و گونه اندازه­گیری شد. در این بررسی 47 گونه علف­هرز از 24 خانواده گیاهی شناسایی گردید. خانواده­های کاسنی (Asteraceae) و گندمیان (Poaceae) بیشترین غنای گونه­ای را به خود اختصاص دادند. علف­های هرز یکساله با 30 و چند ساله با 16 گونه به ترتیب بیشترین و کمترین تعداد را داشتند. در مزارع کوهستانی به علت عدم مصرف علف­کش، تراکم علف­های هرز برگ پهن بیشتر بود. در این ناحیه نسبت فراوانی گونه­هایC3  به C4 در مقایسه با دشت به دلیل کمتر بودن میانگین دما چیرگی داشت. شاخص شانون در منطقه کوهستان (13/1Hm=) بزرگتر از ناحیه دشت (04/1Hp=) برآورد گردید. بیشتر بودن تنوع گونه­ای در منطقه کوهستانی را به پایداری بیشتر این ناحیه می­توان نسبت داد. جمعیت کمتر علف­های هرز نیز در مزارع دشت نشان از نقش مهم عملیات خاک ورزی است. به طور کلی تفاوت مدیریت­های اعمال شده در دو ناحیه مورد بررسی در بلند مدت، به عنوان فیلترهای زراعی بر جمعیت و ترکیب گونه­ای علف­های هرز مؤثر بوده است.

کلیدواژه‌ها


عنوان مقاله [English]

Comparative Analysis of Soybean (Glycine max L.) Weed Flora in Mountain and Plain Regions in the East of Mazandaran Province

نویسنده [English]

  • H. Salehian
Islamic Azad University, Qaemshahr Branch
چکیده [English]

Introduction: Weed distribution studies are useful not only for increasing in herbicide application efficiency but also for evaluating and designing the agronomical approaches and weed management strategies. Community assembly theory provides a useful framework to assess the response of weed communities to agricultural management systems and to improve the predictive power of weed scientists. Under this framework, weed community assembly is constrained by abiotic and biotic ‘‘filters’’ that act on species traits to determine community composition. Weed management practices vary between conventionally and organically managed systems. The main filter in conventional systems likely would be herbicides, which are strong filters that select tolerant species against susceptible species. , Other filters like fertilizers also represent potential filters on weed community assembly. Therefore, this experiment performed in order to determine species and functional diversity and weed community structure in the soybean fields in two plain and mountain regions, which located in Neka and Galugah counties in the east of Mazandaran province.
Material and Methods: In order to arrange the experiment, two Neka and Galugah counties were selected in the east of Mazandaran province. In Neka, all the experimental fields were in the plain but in Galugah some fields located in the plain and some in the mountain regions. According to the potential of selected field, sampling were done in five to nine points in each field. The total area sampled was 2820 ha and systematic sampling method was done at the stage of fourth growing nude (V4) in 2018. The size of quadrates was 0.5×0.5 m. For each species recorded in the quadrates, density, frequency and their evenness were measured. Shannon index was used to estimate of diversity. Sampled plants categorized on the four functional groups; life cycle, morph type, photosynthesis pathway and insistence degree. In some collections belongs to multivariate data, variables naturally divided in two groups. In this situation canonical correlation analysis (CCA) be used for determination relationships between them.
Results and Discussion: Overall, 47 weed species from 23 families were recognized. Asteraceae and Poaceae families each with eight species had the most species richness. The frequency of annual and perennial weed species were 33 and 13 plants, respectively. In mountain fields, broadleaf weed species was more because herbicide was not used. Because benefiting of low temperature in mountain fields, C3 plants had more share relative to C4 ones. Shannon index in the mountain region (Hm=1.13) was estimated more than the plain region (Hp=1.04), this subject related to further sustainability. Less weed density in the plain fields it seems arise from role of cultivation. The plain region had low species richness because agronomical managements possess intensive effects on the weed frequency and diversity. In this place, herbicides were the most important agents. The studies often have shown that perennial weeds are more in the fields in which they are applied minimum tillage or exist in cold places. This subject is caused from preservation food resources in the reserves organs. Johnson grass had more density in the plain relative to mountain regions, which its reason related to segment their rhizomes. Many species correlated with Min tillage have seeds which spread with wind. For example, Dandelion, Grinning swallow and Prickly lettuce observed only in the mountain. Using crop cultivars with high compatibility has a special role in reduction yield loss. So that characteristics such leaf area and plant height have straight link with competition ability. In this study cultivars such as 033 and JK were used (full leaf and tall). From 12 species that only observed in the plain, barnyard grass, goose grass, ground cherries, garden purslane and common heliotrope completely adapted to the warm and humidity conditions that existed in this region. Using CCA to analysis the relationship of site and functional groups confirmed that the majority species in the mountain regions were dicotyledonous, C3 and annual species.
Conclusion: Our conceptual framework proposes showed that weed community assembly in the soybean fields affected by a series of filters, such as herbicide, tillage, cultivars, fertilizer and temperature. Generally, different management in two regions for a long time as agronomy filters affected weed density and their composition. Our results suggest that the effects of crop management factors are more important than the environmental factors on soybean weed composition in a county-wide context even for intensified agriculture.

کلیدواژه‌ها [English]

  • Agronomical filters
  • Flora
  • Weed diversity
Ahmadi A., Rashed Mohasel M.H., Khazaei H.R., Ghanbari A., Ghorbani R., and Mousavi S.K. 2013. Weed floristic composition in Lentil (Lens culinaris) farms in Khorramabad. Iranian Journal of Field Crops Research 11: 45-53. (In Persian with English abstract)
2- Armengot L., Berner A., Blanco-Moreno J.M., Mader P., and Sans F. 2015. Long-Term feasibility of reduced tillage in organic farming. Agronomy for Sustainable Development 35: 339-346.
3- Armengot L., Blanco-Moreno J. M., Barberi P., Bocci G., Carlesi S., Aendekerk R., et al. 2016. Tillage as a driver of change in weed communities: a functional perspective. Agriculture Ecosystem and Environment 22: 276-285.
4- Booth B.D., and Swanton C.J. 2002. Assembly theory applied to weed communities. Weed Science 50: 2-13.
5- Chamani A. 1996. Determination plant diversity and richness about vegetation in the Mirzabailoo plain and south of Alme Mountain. Thesis Master of Science. Gorgan Natural and Agriculture University. 92 pp.
6- Chauhan B.S., Singh R.G., and Mahajan G. 2012. Ecology and management of weeds under conservation agriculture: A review. Crop Protection 38: 57-65.
7- Davis A.S., Renner K.A., and Gross K.I. 2005. Weed seedbank and community shifts in a long term cropping system experiment. Weed Science 53: 296-306.
8- De Oliveira R., and D'Antonio C.M. 2017. Multiple ecological strategies explain the distribution of exotic and native C4 grasses in heterogeneous early successional sites in Hawai'i. Journal of Plant Ecology 10: 426-439.
9- Douglas D.B., Hartzler G.R., and Forcella F. 1997. Implication of weed seedbank dynamics to weed management. Weed Science 45: 329-336.
10- Edesi L., Jarvan M., Adamson A., Lauringson E., and Kuht J. 2012. Weed species diversity and community composition in conventional and organic farming: a five-year experiment. Zemdirbyste-Agriculture 99: 339-346.
11- Frison E.A., Cherfas J., and Hodgkin T. 2011. Agricultural biodiversity is essential for a sustainable improvement in food and nutrition security. Sustainability 3: 238-253.
12- Ghodraty E., Zaefarian F., Rezvani M., and Mansouri I. 2015. Effect of thermo-priming on seed dormancy interruption in ground cherries(Physalis alkekengi). Journal of Agricultural Engineering and Biotechnology 3: 138-141.
13- Hock S.M., Knezevic S.Z., Martin A.R., and Lindquist J.L. 2006. Soybean row spacing and weed emergence time influence weed competitiveness and competitive indices. Weed Science 54: 38-46.
14- Holzner W. 1982. Concepts, Categories and characteristics of weeds. P. 3-20. In Holzner W., and Numata N (ed.) Biology and ecology of weeds. Dr W. Junk Publishers, The Hague.
15- Hunt J.R., Cousens R.D., and Knights S.E. 2009. Heliotropium europaeum only germinates following sufficient rainfall to allow reproduction. Journal of Arid Environments 73: 602-610.
16- Huppe J., and Hofmeister H. 1990. Syntaxonomische Fassung und Ubersicht uber die Ackerunkrautgesellschaften der Bundesrepublik Deutschland. Berichte der Reinhold-Tuxen-Gesellschaft, 2: 61-81.
17- Jahani-Kondori M., Koocheki A., Nassiri Mahalati M., and Rezvani Moghaddam P. 2012. The effects of soil chemical characteristics on weed species diversity in eastern Mashhad region wheat (Triticum aestivum L.) fields. Journal of Agroecology 4: 91-103. (In Persian with English abstract)
18- Jiang Y., Kang M., Zhu Y., and Xu G. 2007. Plant biodiversity patterns on Helan mountain Chaina. Acta Oecologica 32: 125-133.
19- Klingman T.E., and Oliver L.R. 1994. Palmer amaranth (Amaranthus palmeri) interference in soybeans (Glycine max). Weed Science 42: 523-527.
20- Kumar A., Battachavya M., Sarkar B., and Arunachalam V. 2007. Weed floristic composition in palm gardens in plains of eastern Himalayan region of west Bengal. Current Science 92: 1434-1439.
21- Legere A., Stevenson F.C., and Benoit D.L. 2005. Diversity and assembly of weed communities: contrasting responses across cropping systems. Weed Research 45: 303-315.
22- Loreau M., and de Mazancourt C. 2013. Biodiversity and ecosystem stability: a synthesis of underlying mechanisms. Ecology Letters 16: 106-115.
23- Lososova Z., Chytry M., Cimalova S ., Kropac Z., Otypkova Z., Pysek P., and Tichy L. 2004. Weed vegetation of arable land in Central Europe: gradients of diversity and species composition. Journal of Vegetation Science 15: 415-422.
24- Lososova Z., Chtry M., and Kuhn I. 2008. Plant attributes determining the regional abundance of weeds on central European arable land. Journal of Biogeography 35: 177-187.
25- Magurran A.E. 1988. Ecological diversity and its measurements. Princeton University Press. New Jersey, United States 179 pp.
26- Manly B.F.J. 2010. Multivariate Statistical Methods A Primer. Translated by Moghadam M., Mohammadi S. A., and Aghaee Sarbarzeh M. Tabriz Pariver Publication. 276 pp.
27- Min Bashi Moeini M., Baghestani M.A., Rahimiyan Mashhadi H., and Alifar M. 2009. The distribution of weeds of irrigated wheat of Tehran province using geographic information system (GIS). Weeds Journal 4: 97-118. (In Persian)
28- Momen-Yasaghi R., Siahmarguee A., Zeinali E., Ghaderi far F., and Kamkar B. 2017. The Study of Weed Population and Seed Bank Dynamic and Soybean Yield under Different Tillage Methods. Journal of Agroecology, 3: 575-592. (In Persian with English abstract)
29- Mulugeta D., and Stoltenberg D.E. 1997. Weed and seedbank management with integrated as influenced by tillage. Weed Science 45: 706-715.
30- Nichols V., Verhulst N., Cox R., and Govaerts B. 2015. Weed dynamics and conservation agriculture principles: A review. Field Crops Research 183: 56-68.
31- Nishimoto R.K., and McCarty L.B. 1997. Fluctuating temperature and light influence seed germination of goose grass (Eleusine indica). Weed Science 45: 426-429.
32- Norozzadeh S., Rashed Mohasel M.H., Nassiri Mahalati M., Koochaki A.R., and Abbaspoor M. 2008. Evaluation of species, functional and structural diversity of weeds in wheat fields of northern, southern and razavi khorasan provinces. Iranian Journal of Field Crops Research 2: 471-485. (In Persian with English abstract)
33- Norsworthy J.K. 2008. Effect of tillage intensity and herbicide programs on change in weed species density and composition in the south eastern coastal plains of the United States. Crop Protection 27: 151-160.
34- Pinke G., Karacsony P., Czucz B., Batta-Dukot Z., and Lengyel A.2012. The influence of environment, management and site context on species composition of summer arable weed vegetation in Hungary. Applied Vegetation Science 15: 136-144.
35- Place G.T., Chris Reberg-Horton S., Dickey D.A., and Carter Jr T.E. 2011. Identifying soybean traits of interest for weed competition. Crop Science 51: 2642-2654.
36- Poggio S.L. 2005. Structure of weed communities occurring in monoculture and intercropping of field pea and barely. Agriculture Ecosystems and Environment 109: 48-58.
37- Power E.F., Kellyand D.L., and Stout J.C. 2013. The impacts of traditional and novel herbicide application methods on target plants, non-target plants and production in intensive grasslands. Weed Research 2: 131-139.
38- Rankins A., Byrd J.J.D., Mask J.D.B., Barnett J.W., and Gerard P.D. 2005. Survey of soybean weeds in Mississippi. Weed Technology 19: 492-498.
39- Rashed Mohassel M. H., Najafi H., and Akbarzadeh M.D. 2010. Weed Biology and Control. Ferdowsi University Press. 404 pp.
40- Ryan M.R., Smith R.G., Mirsky S.B., and Mortensen D. 2010. Management filters and species traits: weed community assembly in long-term organic and conventional systems. Weed Science 58: 265-277.
41- Ryan M. R., Mirsky S.B., Mortenson D.A., and Teasdale J.R. 2011. Potential synergistic effects of cereal rye biomass and soybean planting density on weed suppression. Weed Science 59: 238-246.
42- Sage R.F., and Kubien D.S. 2003. Quo vadis C4? An ecophysiological perspective on global change and the future of C4 plants. Photosynthesis Research 77: 209-225.
43- Sage R.F. 2004. The evolution of C4 photosynthesis. New Phytologist 161: 341-370.
44- Sage R.F., Wedin D.A., and Li M.R. 2011. The biogeography of C4 photosynthesis. P. 313-373. In Sage R.F., and Monson R.K. (ed.) C4 plant biology San Diego, California: Academic Press.
45- Salehian H., and Mamaghani M.S. 2018. Comparisons of weed density and diversity in two low and high input systems in soybean (Glycine max L.). Journal of Plant Ecophysiology 11: 32-42. (In Persian with English abstract)
46- Schafer J.R., Hallett S.G., and Johnson W.G. 2012. Response of Giant Ragweed (Ambrosia trifida), Horseweed (Conyza canadensis), and Common Lambsquarters (Chenopodium album) biotypes to glyphosate in the presence and absence of soil microorganisms. Weed Science 60: 641-649.
47- Silc U., Vrbnicanin S., Bozic D., Carni A., and Stevanovic D. 2009. Weed vegetation in the north-western Balkans: diversity and species composition. Weed Research 49: 602-612.
48- Silva L.C.R., Giorgis M.A., Anand M., Enrico L., Perez-Harguindeguy N., Falczuk V., Tieszen L.L., and Cabido M. 2011. Evidence of shift in C4 species range in central Argentina during the late Holocene. Plant and Soil 349: 261-279.
49- Steinmaus S.J., Parther T.S., and Holt J.S. 2000. Estimation of base temperatures for nine weed species. Journal of Experimental Botany 51: 275-286.
50- Still C.J., Pau S., and Edwards E.J. 2014. Land surface skin temperature captures thermal environments of C3 and C4 grasses. Global Ecology and Biogeography 23: 286-296.
51- Sutcliffe O.L., and Kay Q.O.N. 2000. Changes in the arable flora of central southern England since the 1960s. Biological Conservation 93: 1-8.
52- Wiese A.M., and Binning L.K. 1987. Calculating the threshold temperature of development for weeds. Weed Science 35: 177-179.
53- Zand E., Mousavi S K., and Heidari A. 2014. Herbicides and their Applications. 2nd Edition By Fundamental Changes. Ferdowsi University Press. 547 pp.
54- Zigeu R., Zhau Z., Guo Dong J., Fa Ho C., Loukas B., Jiawu Z., and Mingrui Q. 2010. Relationship between climate conditions and the relative abundance of modern C3 and C4 plants in three regions around the North Pacific. Chinese Science Bulltin 55: 1931-1936.
CAPTCHA Image