پی‌جویی مقاومت خردل وحشی (Sinapis arvensis L.) به تری‌بنورون-متیل و تهیه نقشه پراکنش آن در مزارع گندم رامهرمز

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی ارشد شناسایی و مبارزه با علف‌های هرز، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، ملاثانی، باوی، ایران

2 استادیار، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، ملاثانی، باوی، ایران

3 استادیار گروه مهندسی تولید و ژنتیک گیاهی دانشگاه علوم کشاورزی و منابع طبیعی خوزستان

چکیده

به‌منظور پی‌جویی مقاومت در توده­های خردل وحشی نسبت به ‌تری­بنورون-متیل در مزارع گندم شهرستان رامهرمز مطالعه­ای طی سال­های 1397-1396 با استفاده از آزمایش­های گلدانی در دانشگاه علوم کشاورزی و منابع طبیعی خوزستان انجام شد. در این مطالعه، 22 توده خردل وحشی مشکوک به مقاومت به علف‌کش‌ تری‌بنورون-متیل از مزارع گندم  شهرستان رامهرمز جمع­آوری گردید. یک توده ­حساس نیز از مزارعی که هیچ­گونه سابقه سمپاشی نداشتند جمع­آوری شد. آزمایش­های گلدانی در دو مرحله شامل غربال اولیه توده­ها با استفاده از دُز توصیه شده تری‌بنورون-متیل (15 گرم ماده موثر در هکتار) و سپس آزمون دٌز-پاسخ در مورد توده‌های مقاوم انجام شد. نتایج آزمایش غربال اولیه بر اساس سیستم رتبه‌بندی ادکینز و موس نشان داد که نُه توده (B، C، H، P، S، T، U، W، و X) قطعاً مقاوم (RRR)، ده توده (A، E، F، G، K، L، M، O، Q و R) احتمالاﹰمقاوم (PR یا RR)، و سه توده (D، N و Y) حساس (S) و یا مشکوک به مقاومت (R?) به تری‌بنورون-متیل بودند. مقدار علف‌کش مورد نیاز برای 50 درصد کاهش وزن خشک مقاوم‌ترین توده (W) و توده حساس (Z) به‌ترتیب به‌میزان 60/55 و 80/6 گرم ماده موثر در هکتار محاسبه شد که بر اساس حدود اطمینان محاسبه شده اختلاف معنی‌داری با یکدیگر داشتند. شاخص درجه مقاومت توده­ها بر اساس اندازه‌گیری وزن خشک و درصد بوته‌های زنده‌مانده به ترتیب بین 17/8-10/1 و 60/7-08/2 محاسبه شد. ترسیم نقشه پراکنش مزارع آلوده به توده­های مقاوم خردل وحشی با استفاده از سامانه سیستم اطلاعات جغرافیایی نشان داد که اغلب توده­های مقاوم در مناطق شرق و جنوب شرقی شهرستان رامهرمز پراکنده­اند.

کلیدواژه‌ها


عنوان مقاله [English]

Tracing Wild Mustard (Sinapis arvensis L.) Accessions Resistant to Tribenuron-methyl in Wheat Fields of Ramhormoz and Preparing Distribution Map of Resistant Fields

نویسندگان [English]

  • L. Pourmorad 1
  • E. Elahifard 2
  • Abdolreza Siahpoosh 3
1 Graduate of Master Degree in Weed Science Department of Plant Production and Genetics, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Bavi, Iran
2 Assistant Professor, Department of Plant Production and Genetics, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Bavi, Iran
3 Assistant professor of agronomy, Production Engineering and Plant Genetics,, Department, Agricultural Sciences and Natural Resources University of Khuzestan
چکیده [English]

Introduction: Wild mustard (Sinapis arvensis L.) is a very common weed within cereal and rapeseed fields in Iran and many other countries. This weed is usually controlled by tribenuron-methyl in wheat fields of Iran. However, due to consecutive application of tribenuron-methyl for the last 27 years in wheat fields, control failures were reported by farmers. Resistance to ALS inhibiting herbicides is the most common form of herbicide resistance in the world. So far, 165 resistant biotypes to this family have been reported. Therefore, present study was carried out to survey suspected of resistance wild mustard accessions to tribenuron-methyl in wheat fields of Ramhormoz and preparing distribution map of resistant fields.
Materials and Methods: An experiment was conducted in Agricultural Sciences and Natural Resources University of Khuzestan during 2017-2018. 22 no. of the suspected resistance wild mustard accessions to tribenuron-methyl were gathered from wheat fields of the Ramhormoz. One susceptible accession was also gathered from a field with no history of spraying. Pot experiments were carried out in two stages including the initial screening with the recommended dose of tribenuron-methyl (15 g ai ha-1) and dose-response assay that accessions were investigated for the effect of tribenuron-methyl on dry weight and survival plant no. under outdoor conditions. The plants per pots were sprayed, based on tribenuron-methyl dose (0, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16, and 32-fold of recommended dose). The shoot dry weight data were converted to a percentage based on control plants data within each accession. A log-logistic curve with three and four-parameters was used to describe dose–response relationships. Dry-weight data were fitted to a nonlinear log-logistic regression model using the package drc in the statistical program R (R Development Core Team, 2008). The distribution map of the resistant populations was plotted using ArcGIS 10.3 software.
Results and discussion: Screening results showed that nine accessions (B, C, H, P, S, T, W, X, U) were strongly resistant (R) and 10 accessions (A, E, F, G, K, L, M, O, Q, R) were probably resistant (PR or RR), and three accessions (D, N and Y) were susceptible (S) or suspected resistance (SR) to tribenuron-methyl based on Adkins and Mo‘s 's ranking system. While, Screening results based on Mo‘s 's ranking system showed that nine accessions (B, C, H, P, S, T, W, X, U) were completely resistant (RRR) and 10 accessions (A, E, F, G, K, L, M, O, Q, R) were probably resistant (RR), and two accessions (D and N) were suspected resistance (SR) and one population (Y) was susceptible to tribenuron-methyl. With increasing doses of the herbicide tribenuron-methyl, the dry weight of susceptible and susceptible accessions decreased during the sigmoid process. Resistance factor of accessions (W, U, X, S, B, C, T, K, R, G, Q, O, E, A, P, M, F, H, and L) based on dry weight (% of control) and survival (% of control) ranged from 1.10- 8.17 and 2.08-7.60, respectively. A different resistance factor was observed between the accessions; thus, the W accession with the highest resistance factor of 8.17 and 7.60 and the L accession with the lowest resistance factor of 1.10 and 2.80 based on dry weight and survival (% of control) were resistant to the herbicide tribenuron-methyl. While 6.80 g ai ha-1 caused a 50% reduction in the dry weight of the susceptible Z accession, this reduction was calculated to be 60.55 g ai ha-1 for the most resistant accession (W), which differed significantly based on the calculated confidence limits. A map of the distribution of contaminated fields of resistant wild mustard accessions using GIS showed that most resistant accessions were observed in eastern and southeastern regions of Ramhormoz.
Conclusion: The results of this experiment confirmed the presence of resistance in wild mustard accessions to tribenuron-methyl. Repeated use of tribenuron-methyl in wheat fields of Ramhormoz is one of the most important reasons for resistance in these fields. Distribution map makes it possible to predict farms infected with resistant accessions and help prevent the recommendation and use of ALS inhibiting herbicides in these farms, so that in order to break the resistance in resistant accessions and it will be effective reduce the use of herbicides. Therefore, the use of distribution maps can be used to implement integrated weed management programs and to prevent the development of resistance accessions in other areas.

کلیدواژه‌ها [English]

  • Dose-Response
  • Geographic information system
  • Resistance factor
  • Screening
  1. Abdollahipour M., Gherekhloo J., Bagherani N., and Taghvaei M.R. 2016. Effects relative fitness of susceptible and tribenuron methyl resistant biotypes of wild mustard (Sinapis arvensis L.). Scinzer Journal of Agricultural and Biological Sciences 2(1): 15-23.
  2. Adkins S., Wills W.D., Boersma M., Walker S.R., Robinson G., McLeod R.J., and Einam J.P. 1997. Weed resistance to chlorsulfuron and atrazine from the north-east grain region of Australia. Weed Research 37(5): 343-349.
  3. Afshari M., Ghanbari A., Rastgoo M., Gherekhloo J., and Ahmadvand G. 2017. Investigating resistance of wild mustard (Sinapis arvensis L.) populations to tribenuron-methyl herbicide. Journal of Crop Ecophysiology 11(41): 127-142. (In Persian with English abstract)
  4. Andrews T.S., Morrison I.N., and Penner G.A. 1998. Monitoring the spread of ACCase inhibitor resistance among wild oat (Avena fatua) patches using AFLP analysis. Weed Science 46(2): 196-199.
  5. Beckie H.J. 2007. Beneficial management practices to combat herbicide-resistant grass weeds in the Northern Great Plains. Weed Technology 21(2): 290-299.
  6. Beckie H.J., Heap J.M., Smeda R.J., and Hall L.M. 2000. Screening for herbicide resistance in weeds. Weed Technology 14(2): 428-445.   
  7. Beffa R., Figge A., Lorentz L., Hess M., Laber B., and Ruiz-Santaella J.P. 2012. Weed resistance diagnostic technologies to detect herbicide resistance in cereal growing areas. A review. 25th German Conference on Weed Biology and Weed Control. March 13-15, Braunschweig, Germany.
  8. Derakhshan A., Najari Kalantari N., Gherekhloo J., and Kamkar B. 2015. Wild mustard (Sinapis arvensis) and annual bastard cabbage (Rapistrum rugosum) resistance to tribenuron-methyl in Agh Ghala. Journal of Plant Protection 29(2): 199-205. (In Persian with English abstract)
  9. Elahifard E., Derakhshan A., and Zarinjoob H.A. 2017. Tracing weed resistance to to ACCase inhibitor herbicides and acetolactate synthase and synthetic auxins in wheat (Triticum aestivum L.) fields of Shoushtar. Journal of Plant Protection 31(2): 284-295. (In Persian with English abstract)
  10. Gerwik B.C., Mireles L.C., and Eilers R.J. 1993. Rapid diagnosis of ALS/AHAS-resistant weeds. Weed Technology 7(2): 519-524.  
  11. Gherekhloo J., Oveisi M., Zand E., and De Prado R. 2016. A review of herbicide resistance in Iran. Weed Science 64(4): 551-561.
  12. Hatami Z.M., Gherekhloo J., Rojano-Delgado A.M., Osuna M.D., Alcántara R., Fernández P., Sadeghipour H.R., and De Prado R. 2016. Multiple mechanisms increase levels of resistance in Rapistrum rugosum to ALS herbicides. Frontiers in Plant Science 7: 1-13.
  13. Heap I. 2020. International Herbicide-Resistant Weed Database. http://www.weedscience.org/Pages/SOASummary.aspx. Accessed: 12 May 2020.
  14. Heravi M., Gherkhloo J., Siahmarguee A., Kazemi H., and Hassanpour Bourkheili S. 2017. Investigating the resistance of wild mustard (Sinapis arvenisis L.) biotypes to tribenuron methyl herbicide in wheat fields of Ramiyan Township. Weed Research Journal 10(1): 46-59. (In Persian with English abstract)
  15. Kalami K., Gherekhloo J., Kamkar B., Esfandiaripour E., and De Prado R. 2014. Identifying and mapping of wild oat (Avena ludoviciana Dur.) and Phalaris minor Retz. populations resistant to clodinafop-propargyl in wheat fields of Kordkuy.‪In Proceedings of the 248th American Chemical Society National Meeting and Exposition. Washington, DC: American Chemical Society.
  16. Lotfifar O., Allahdadi I., Zand E., and Akbari G.A. 2014. Investigating resistance of wild mustard (Sinapis arvensis L.) populations to acetolactate synthase inhibiting herbicides in wheat fields of Khoozestan, Gorgan and Kermanshah provinces. Iranian Journal of Weed Science 9(2): 141-157. (In Persian with English abstract)
  17. Mallory-Smith C.A., Thill D.C., and Dial M.J. 1990. Identification of sulfonylurea herbicide-resistant prickly lettuce (Lactuca serriola). Weed Technology 4(1): 163–168.
  18. Moss S.R., Perriman S.A.M., and Tatnell L.V. 2007. Managing herbicide resistant black grass (Alopecurus myosuriodes): Theory and practice. Weed Technology, 21(2): 300-309.
  19. Najari Kalantari N., Gherekhloo J. and Kamkar B. 2013. Tracing and map of canary grass (Phalaris minor) and hood grass (Phalaris paradoxa) biotypes resistant to clodinafop-propargyl herbicide in wheat fields of Aq-qala. Weed Research Journal 5(1): 85-97.
  20. Primiani M., Cotterman M.J.C., and Saari L.L. 1990. Resistance of Kochia (Kochia scoparia) to sulfonylurea and imidazolinone herbicides. Weed Technology 4(1): 169–172.
  21. Razghandi A. 2016. Identification of resistant biotypes to aryloxyphenoxypropionate and acetolactate synthase inhibitors in wheat fields of Ali Abad-e Katool and preparing their distribution map. MSc thesis, Gorgan University of Agricultural Sciences and Natural Resources. (In Persian with English abstract)
  22. Ritz C., and Streibig J.C. 2005. Bioassay analysis using R. Journal of Statistical Software 12(5): 1-22.
  23. Soofizadeh T. 2015. Identification of resistant biotypes to aryloxy phenoxy propionate and acetolactate synthase inhibitors in wheat fields Kalaleh and preparing their distribution map. MSc thesis, Gorgan University of Agricultural Sciences and Natural Resources. (In Persian with English abstract)
  24. Tatari S., Gherekhloo J., Siahmarguee A., and Kazemi H. 2018. Identification of resistant Avena ludoviciana Dur accessions to ACCase inhibitor herbicides in Gonbad-E Kavus wheat fields and mapping their distribution. Journal of Plant Production 41(2): 103-116. (In Persian with English abstract)
CAPTCHA Image