تجزیه هیدروتایم جوانه‌زنی بذر شاه‌افسر (Melilotus officinalis (L.) Lam.)، خردل وحشی (Sinapis arvensis L.) و جو (Hordeum vulgare L.)

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشگاه کشاورزی و منابع طبیعی رامین خوزستان

2 علوم کشاورزی و منابع طبیعی خوزستان

چکیده

جوانه‌زنی یک جمعیت بذری در پاسخ به کاهش پتانسیل آب با استفاده از مفهوم هیدروتایم مدل‌سازی می‌شود. این مدل دارای خروجی‌هایی است که از نظر فیزیولوژیکی و اکولوژیکی معنی‌دار می‌باشند. یکی از پیش‌فرض‌های مدل هیدروتایم، توزیع نرمال پتانسیل آب پایه در میان بذرهای یک جمعیت است. با این حال، این فرض در بسیاری از گونه‌ها مشاهده نمی‌شود که برآیند آن پیش‌بینی نادرست جوانه‌زنی است. در این مقاله مدلی بر مبنای توزیع بتا پیشنهاد می‌گردد که علاوه بر پیش‌بینی بسیار مناسب الگوی جوانه‌زنی از نظر زیست‌شناختی نیز بر مدل مرسوم برتری دارد. در این پژوهش، جوانه‌زنی بذر شاه‌افسر (Melilotus officinalis (L.) Lam.)، خردل وحشی (Sinapis arvensis L.) و جو (Hordeum vulgare L.) در محدوده‌ای از پتانسیل‌های آب مورد آزمون قرار گرفت و پاسخ جوانه‌زنی آنها توسط مدل هیدروتایم مبتنی بر دوازده تابع آماری نرمال، بتا، گاما، لوگ‌لجستیک، ویبول، گامبل، بیرنبام-ساندرز، نرمال معکوس، لوگ‌نرمال، لجستیک، ریلی و گاما معکوس توصیف گردید. نتایج نشان داد که پارامترهای برآورد شده با مدل هیدروتایم مبتنی بر توزیع بتا از اطمینان بیشتری نسبت به سایر توزیع‌ها برخوردار بود (AICc برای شاه‌افسر، خردل وحشی و جو به ترتیب معادل 60/556-، 70/864- و 20/1034- برآورد شد). بر اساس مدل هیدروتایم بتا، ثابت هیدروتایم و آستانه پتانسیل آب برای شروع جوانه‌زنی بذر شاه‌افسر بترتیب 01/14 مگاپاسکال ساعت و 85/0- مگاپاسکال، برای خردل وحشی به ترتیب 33/22 مگاپاسکال ساعت و 98/0- مگاپاسکال و برای جو به‌ترتیب 69/48 مگاپاسکال ساعت و 47/2- مگاپاسکال برآورد شد. با توجه به انعطاف‌پذیری توزیع بتا، این مدل امکان پیش‌بینی دقیق جوانه‌زنی و نیز تعیین توزیع پتانسیل آب پایه را فراهم می‌آورد.

کلیدواژه‌ها


عنوان مقاله [English]

Hydrotime Analysis of Yellow Sweetclover (Melilotus officinalis (L.) Lam.), Wild Mustard (Sinapis arvensis L.) and Barley (Hordeum vulgare L.) Seed Germination

نویسندگان [English]

  • A. Derakhshan 1
  • M. R. Moradi-Telavat 1
  • ُSeyed atollah Siadat 2
1 Ramin Agricultural and Natural Resources University of Khouzestan
2
چکیده [English]

Introduction: Seed germination is one of the key stages in the life cycle of plants that can ultimately affect their fitness in the environment. The temporal pattern of seed germination is extremely depended on the soil water potential (Ψ) of the germination medium, as this determines the equilibrium water content of the seed. As for temperature, there is a minimum Ψ that must be exceeded in order for seeds complete germination, and seeds in a population vary in the value of this minimum or base Ψ. The germination of a seed population in response to the reduced water potential is modeled using the hydrotime model. According to this model, the time to germination for a given seed fraction (g) is inversely related to the difference between the current seed Ψ and the base water potential (Ψb) for that fraction (Ψb(g)). The hydrotime model functions are well in matching both the timing and the percentage of germination of seed populations in relation to their Ψ environment. In addition, the model outputs which are significant physiologically and ecologically and the parameters of the model can be used to characterize the properties of seed populations. Normal distribution of Ψb among seeds within a population is one of the assumptions of the hydrotime model. However, this assumption may not be met in many species and thus can result in poor predictions. We tried to investigate empirically the validity of this assumption, to compare the fit of alternative distributions and make recommendations to improve germination modeling procedures.
Materials and Methods: Seed germination of Melilotus officinalis, Sinapis arvensis and Hordeum vulgare were tested across a range of water potentials (0, -0.2, -0.4, -0.6 and -0.8 MPa for M. officinalis and S. arvensis and 0, -0.3, -0.6, -0.9, -1.2 and -1.5 MPa for H. vulgare) and germination responses were described by the hydrotime models based on twelve statistical functions including Normal, Beta, Gamma, Loglogistic, Weibull, Gumbel, Birnbaum-Saunders, Inverse-normal, Log-normal, logistics, Rayleigh and Inverse-gamma. Four replicates of 50 seeds were spread evenly within 9-cm-diameter Petri dishes, each containing a Whatman No 1 filter paper. Each filter paper was moistened with 6 mL of polyethylene glycol (PEG) solutions or distilled water (0 MPa). Osmotic solutions were prepared by dissolving PEG 6000 in distilled water according to the Michel (1983) equation. Germinated seeds (radicle protrusion of>2 mm) were counted daily two or three times for 20 days. All distributions, having been formulated into the hydrotime model, were fitted to data using the PROC NLMIXED procedure of SAS, with the default optimization technique of dual quasi-Newton algorithm.
Results and Discussion: The results showed that the estimated parameters of the hydrotime model developed on the basis of Beta distribution had more certainty than the other distributions (AICc=-556.60 for M. officinalis, AICc=-847.70 for S. arvensis and AICc=-1034.20 for H. vulgare). Based on the Beta hydrotime model, values of the hydrotime constant (θH) and water potential threshold for beginning of M. officinalis seed germination (δ) were estimated to be 14.01 MPa h and -0.85 MPa, respectively. For S. arvensis, θH and δ estimated to be 22.23 MPa h and -0.98 MPa, respectively. Estimated θH and δ for H. vulgare was 48.69 MPa h and -2.47 MPa, respectively. Results of this research are in contrast to assumption of a normal distribution of base water potential of a seed population. Hence, before using a hydrothermal time model to make predictions, the distribution of base water potential within a seed sample should be examined and an appropriate equation should be selected.. The results indicated that among all three species, the Beta distribution resulting in more accurate predictions than the other distributions. The hydrotime model based on Beta distribution predicts an actual value for the phase of delay germination. In fact, less skewed in predicted germination using beta model can be related to more accurately of this function to predict the onset of germination. Shape parameter gives high flexibility to this model and allows more accurate prediction of delayed germination phase. In addition, the hydrotime model based on Beta distribution was able to prediction germination of species for which the base water potential distribution is symmetrical or unsymmetrical.
Conclusion: In this paper, a model based on the beta distribution is proposed which is not only more biologically relevant, but also provides better predictions of germination compared to the conventional model.

کلیدواژه‌ها [English]

  • Base water potential
  • Beta model
  • Cumulative distribution function
  • Modeling
1- Allen P. 2003. When and how many? Hydrothermal models and the prediction of seed germination. New Phytologist, 158(1): 1–3.
2- Alvarado V., and Bradford K.J. 2002. A hydrothermal time model explains the cardinal temperatures for seed germination. Plant, Cell and Environment, 25(8): 1061–1069.
3- Balakrishnan N. 1992. Handbook of the Logistic Distribution. Marcel Dekker, New York.
4- Baskin C.C., and Baskin J.M. 1998. Seeds: Ecology, Biogeography, and Evaluation of Dormancy and Germination. Academic Press, San Diego, CA, USA.
5- Bloomberg M., Sedcole J.R., Mason E.G., and Buchan G. 2009. Hydrothermal time germination models for radiata pine (Pinus radiata D. Don). Seed Science Research, 19(3): 171–182.
6- Bradford K.J. 1990. A water relations analysis of seed germination rates. Plant Physiology, 94(2): 840–849.
7- Bradford K.J. 2002. Applications of hydrothermal time to quantifying and modeling seed germination and dormancy. Weed Science, 50(2): 248–260.
8- Bradford K.J., and Still D.W. 2004. Applications of hydrotime analysis in seed testing. Seed Technology, 26(1): 75–85.
9- Brown R.F., and Mayer D.G. 1988. Representing cumulative germination. 2. The use of Weibull function and other empirically derived curves. Annals of Botany, 61(2): 127–138.
10- Burnham K.P., and Anderson D.R. 2002. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. Springer, New York, USA.
11- Cordeiro G.M., and Lemonte A.J. 2011. The β -Birnbaum–Saunders distribution: An improved distribution for fatigue life modeling. Computational Statistics and Data Analysis, 55(3): 1445–1461.
12- Daws M.I., Crabtree L.M, Dalling J.W., Mullins C.E., and Burslem D.R.P. 2008. Germination responses to water potential in neotropical pioneers suggest large-seeded species take more risks. Annals of Botany, 102(6): 945–951.
13- den Dekker A.J., and Sijbers J. 2014. Data distributions in magnetic resonance images: a review. Physica Medica, 30(7): 725–741.
14- Evans M., Hastimgs N., and Peacock B. 2000. Statistical distributions, Third edn. John Wiley & Sons, Inc, New York.
15- Derakhshan A., Akbari H., and Gherekhloo J. 2014. Hydrotime modeling of Phalaris minor, Amaranthus retroflexus and A. blitoides seed germination. Iranian Journal of Seed Sciences and Research, 1(1): 82-95. [In Persian with English Summary]
16- Finch-Savage W.E., Steckel J.R.A., and Phelps K. 1998. Germination and post-germination growth to carrot seedling emergence: predictive threshold models and sources of variation between sowing occasions. New Phytologist, 139 (3): 505–516.
17- Gummerson R.J. 1986. The effect of constant temperatures and osmotic potentials on the germination of sugar beet. Journal of Experimental Botany, 37(6): 729–741.
18- Kebreab E., and Murdoch A.J. 1999. Modelling the effects of water stress and temperature on germination rate of Orobanche aegyptiaca seeds. Journal of Experimental Botany, 50(334): 655–664.
19- Knezevic S., Evans S.P., Blankenship E.E., Acker R.C.V., and Lindquist J.L. 2002. Critical Period for weed control: the concept and data analysis. Weed Science, 50(3): 773–786.
20- Mesgaran M.B., Mashhadi H.R., Alizadeh H., Hunt J., Young K.R., and Cousens R.D. 2013. Importance of distribution function selection for hydrothermal time models of seed germination. Weed Research, 53(2): 89-101.
21- Mesgaran M.B., Rahimian Mashhadi H.R., Alizadeh H., Ohadi S., and Zare A. 2014. Modeling the Germination Responses of Wild Barley (Hordeum spontaneum) and Littleseed Cannary Grass (Phalaris minor) to Temperature. Iranian Journal of Weed Science, 9(1): 105-118. [In Persian with English Summary]
22- Michel B.E. 1983. Evaluation of the water potentials of solutions of polyethylene glycol 8000 both in the absence and presence of other solutes. Plant Physiology, 72(1): 66–70.
23- Nair N.U., Sankaran P.G., and Balakrishnan N. 2013. Quantile-Based Reliability Analysis. Springer, New York, Heidelberg Dordrecht London.
24- Ritz C., Cedergreen N., Jensen J.E., and Streibig J.C. 2006. Relative potency in nonsimilar dose–response curves. Weed Science, 54(3): 407–412.
25- SAS. 2009. SAS/STAT 9.2 User’s Guide. SAS Institute, Cary, NC, USA.
26- Schwarz W. 2001. The ex-Wald distribution as a descriptive model of response times. Behavior research methods, instruments & computers, 33 (4): 457–69.
27- Watt M.S., Bloomberg M., and Finch-savage W.E. 2011. Development of a hydrothermal time model that accurately characterises how thermoinhibition regulates seed germination. Plant, Cell and Environment, 34(5): 870–876.
28- Watt M.S., Xu V., and Bloomberg M. 2010. Development of a hydrothermal time seed germination model which uses the Weibull distribution to describe base water potential. Ecological Modelling, 221(9): 1267–1272.
29- Welbaum E., and Bradford K.J. 1991. Water relations of seed development and germination in muskmelon (Cucumis melo L.) VII. Influence of after-ripening and ageing on germination responses to temperature and water potential. Journal of Experimental Botany, 42(9): 1137–1145.
30- Witkovsky V. 2001. Computing the distribution of a linear combination of inverted gamma variables. Kybernetika, 37(1): 79-90.
CAPTCHA Image