##plugins.themes.bootstrap3.article.main##

محمدرضا مرادی تلاوت سید عطااله سیادت ابوالفضل درخشان صمد صفرخانزاده

چکیده

مدل‌های مبتنی بر جمعیت، ابزارهای مفیدی برای توصیف رفتار جوانه‌زنی بذرها در پاسخ به دما هستند. در این مطالعه، دقت پیش‌بینی رهیافت‌های مختلف زمان‌گرمایی جهت مدل‌سازی دوره‌های زمانی پیشرفت جوانه‌زنی علف‌هرز وایه گل‌سفید در واکنش به دما ارزیابی شد. آزمون جوانه‌زنی در هشت دمای ثابت 8، 12، 16، 20، 24، 28، 32 و 36 درجه سانتی‌گراد انجام شد. مقادیر RMSE و AIC نشان داد که وقتی Tb (دمای پایه) و θTm (نیاز زمان‌گرمایی برای تکمیل جوانه‌زنی در دماهای بیشتر از بهینه (To)) برای کل جمعیت بذری ثابت بود و توزیع نرمال برای توصیف تنوع θT(g) (نیاز زمان‌گرمایی برای تکمیل جوانه‌زنی هر کسر بذری معین در دماهای بین Tb و To) و Tm(g) (دمای بیشینه (Tm) برای بازدارندگی گرمایی جوانه‌زنی کسر معین 1-g در دماهای بین To و Tm) بکار رفت، مدل برازش دقیق‌تری به داده‌ها ارائه داد. بر اساس این رویکرد، Tb و θTm برای این گیاه به‌ترتیب معادل 06/1 درجه سانتی‌گراد و 41/1155 درجه سانتی‌گراد ساعت برآورد شد. مقادیر θT و Tm برای کسر 50 درصد (θT(50) و Tm(50)) به‌ترتیب معادل 62/2708 درجه سانتی‌گراد ساعت و 55/34 درجه سانتی‌گراد تعیین شد. مقدار To برای کسرهای مختلف جوانه‌زنی (To(g)) ثابت نبود و برای کسر 50 درصد (To(50)) معادل 51/24 درجه سانتی‌گراد به دست آمد. پارامترهای برآورد شده در این مطالعه می‌تواند برای ساخت مدل‌های پیش‌بینی کننده الگوی رویش علف‌هرز وایه گل‌سفید در مزرعه استفاده شود.

جزئیات مقاله

کلمات کلیدی

تابع توزیع تجمعی, توزیع تجمعی وارونه, توزیع نرمال, دمای بیشینه, دمای پایه

مراجع
1- Bewley J.D., Bradford K.J., Hilhorst H.W.M., and Nonogaki H. 2013. Seeds: Physiology of Development, Germination and Dormancy. Springer, New York.
2- Bradford K.J. 2002. Applications of hydrothermal time to quantifying and modeling seed germination and dormancy. Weed Science 50: 248–260.
3- Burnham K.P., and Anderson D.R. 2002. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. Springer, New York.
4- Chantre G.R., Batlla D., Sabbatini M.R., and Orioli G. 2009. Germination parameterization and development of an after-ripening thermal-time model for primary dormancy release of Lithospermum arvense seeds. Annals of Botany 103: 1291–1301.
5- Derakhshan A., Bakhshandeh A., Siadat S.A., Moradi-Telavat M.R., and Andarzian S.B. 2018a. Application of thermal-time concept to modeling oilseed rape (Brassica napus L.) seed germination response to temperature. Iranian Journal of Field Crops Research 16: 153–164. (In Persian with English abstract)
6- Derakhshan A., Bakhshandeh A., Siadat S.A., Moradi-Telavat M.R., and Andarzian S.B. 2018b. Quantification of thermoinhibition response of seed germination in different oilseed rape cultivars. Environmental Stresses in Crop Sciences 11: 459–469. (In Persian with English abstract)
7- Derakhshan A., Bakhshandeh A., Siadat S.A., Moradi-Telavat M.R., and Andarzian S.B. 2018c. Comparison of probability distribution functions in thermal-time models for modeling of spring oilseed rape germination to temperature. Iranian Journal of Field Crop Science 41: 81–98. (In Persian with English abstract)
8- Derakhshan A., Bakhshandeh A., Siadat S.A., Moradi-Telavat M.R., and Andarzian S.B. 2018d. Quantifying the germination response of spring canola (Brassica napus L.) to temperature. Industrial Crops and Products 122: 195–201.
9- Derakhshan A., and Gherekhloo J. 2014. Study on some ecological aspects of Cutleaf groundcherry (Physalis angulata L.) seed germination and dormancy. Journal of Plant Protection 28: 416–424. (In Persian with English abstract)
10- Derakhshan A., Gherekhloo J., Ribas A.V., and Rafael D.P. 2014. Quantitative description of the germination of Littleseed Canarygrass (Phalaris minor) in response to temperature. Weed Science 62: 250–257.
11- Derakhshan A., Siadat S.A., Bakhshandeh A., Moradi-Telavat M.R., and Andarzian S.B. 2019. Estimation of thermal thresholds for seedling emergence of spring canola in the field. Iranian Journal of Field Crop Science 50: 59–69.
12- Forcella F., Benech Arnold R.L., Sanchez R., and Ghersa C.M. 2000. Modeling seedling emergence. Field Crops Research 67: 123–139.
13- Ghaderi-Far F., Soltani A., and Sadeghipour H.R. 2009. Evaluation of nonlinear regression models in quantifying germination rate of medicinal pumpkin (Cucurbita pepo L. subsp. Pepo. Convar. Pepo var. styriaca Greb), borago (Borago officinalis L.) and black cumin (Nigella sativa L.) to temperature. Journal of Plant Production 16: 1–19. (In Persian with English abstract)
14- Hardegree S.P. 2006. Predicting germination response to temperature. III. Model validation under field-variable temperature conditions. Annals of Botany 98: 827–834.
15- Kamkar B., Jami Al-Alahmadi M., Mahdavi-Damghani A., and Villalobos F.J. 2012. Quantification of the cardinal temperatures and thermal time requirement of opium poppy (Papaver somniferum L.) seeds to germinate using non-linear regression models. Industrial Crops and Products 35: 192–198.
16- Mesgaran M.B., Onofri A., Rahimian Mashhadi H.R., and Cousens R.D. 2017. Water availability shifts the optimal temperatures for seed germination: A modelling approach. Ecological Modelling 351: 87–95.
17- Mesgaran M.B., Rahimian Mashhadi H.R., Alizadeh H., Ohadi S., and Zare A. 2014. Modeling the germination responses of wild barley (Hordeum spontaneum) and littleseed cannary grass (Phalaris minor) to temperature. Iranian Journal of Weed Science 9: 105–118. (In Persian with English abstract)
18- Nascimento W.M., Huber D.J., and Cantliffe D.J. 2013. Carrot seed germination and respiration at high temperature in response to seed maturity and priming. Seed Science and Technology 41: 164–169.
19- Nemati F., Eslami Jadidi B., and Talebi darabi M. 2013. Cytotoxicity effects of bishops flower (Ammi majus) extract on the cancer cell lines Hela and MCF-7. journal of Animal Biology 5: 59–67.
20- Onofri A., Benincasa P., Mesgaran M.B., and Ritz C. 2018. Hydrothermal-time-to-event models for seed germination. European Journal of Agronomy 101: 129–139.
21- Soltani A., Robertson M.J., Torabi B., Yousefi-Daz M., and Sarparast R. 2006. Modelling seedling emergence in chickpea as influenced by temperature and sowing depth. Agricultural and Forest Meteorology 138: 156–167.
22- Zhang H., McGill C.R., Irving L.J., Kemp P.D., and Zhou D. 2012. A modified thermal time model to predict germination rate of ryegrass and tall fescue at constant temperatures. Crop Science 53: 240–249.
23- Wang R., Bai Y., and Tanino K. 2004. Effect of seed size and sub-zero imbibitions temperature on the thermal time model of winterfat (Eurotia lanata (Pursh) Moq.). Environmental and Experimental Botany 51: 183–197.
24- Watt M., and Bloomberg M. 2012. Key features of the seed germination response to high temperatures. New Phytologist 196: 332–336.
25- Watt M.S., Xu V., and Bloomberg M. 2010. Development of a hydrothermal time seed germination model which uses the Weibull distribution to describe base water potential. Ecological Modelling 221: 1267–1272.
ارجاع به مقاله
مرادی تلاوتم., سیادتس. ع., درخشانا., & صفرخانزادهص. (2020). مدل‌سازی زمان جوانه‌زنی علف‌هرز وایه گل‌سفید (Ammi majus L.) در واکنش به دما. مطالعات حفاظت گیاهان, 34(1), 99-111. https://doi.org/10.22067/jpp.v34i1.81598
نوع مقاله
علمی - پژوهشی