##plugins.themes.bootstrap3.article.main##

گودرز احمدوند معصومه دهقان بنادکی اسکندر زند

چکیده

به منظور بررسی کلونی­سازی قارچ، روی ریشه گندم و هشت گونه علف­هرز، نه آزمایش مستقل در قالب طرح کاملاً تصادفی با پنج تکرار در سال 1395 در شرایط گلخانه اجرا شد. آزمایش­های مذکور هر کدام دارای سه تیمار تلقیح با قارچ میکوریزایی گلوموس (Glomus mosseae)، تلقیح با قارچ شبه­میکوریزایی پیریفورموسپورا (Piriformospora indica) و شاهد بدون تلقیح بودند. گونه‌های گیاهی مورد بررسی نیز شامل گندم رقم پیشتاز و علف­های هرز چاودار، جودره، جوموشی، یولاف وحشی، خاکشیر شیرین، علف پشمکی، گندمک و خلر بود. بعد از پر کردن گلدان­ها، اسپور قارچ گلوموس و قطعات میسلیوم قارچ پیریفورموسپورا به گلدان‌ها اضافه و به هر گلدان تعداد 10 گیاه­چه منتقل شد و در مرحله 2 تا 4 برگی به سه بوته در هر گلدان تنک شدند. 8 هفته بعد از انتقال گیاه­چه‌ها، درصد کلونی­سازی، وزن خشک ریشه و اندام هوایی و پاسخ رشد میکوریزایی اندازه­گیری و تعیین شد. نتایج آزمایش نشان­دهنده تأثیر متفاوت قارچ‌های مورد بررسی بر رشد گیاه زراعی و علف­های‌ هرز بود. قارچ‌های گلوموس و پیریفورموسپورا به ترتیب روی ریشه گندم 9/87 و 90 درصد کلونی تشکیل دادند. در بین علف‌های هرز، بیشترین درصد کلونی­سازی توسط هر دو قارچ، با علف­ هرز جودره به میزان 89 درصد و کمترین میزان کلونی­سازی، با ریشه گیاه گندمک به میزان 5/7 درصد مشاهده شد. وزن خشک ریشه و اندام هوایی چاودار در اثر تلقیح هر دو قارچ دچار کاهش شد. تلقیح قارچ گلوموس باعث کاهش وزن خشک ریشه و اندام هوایی یولاف وحشی و گندمک شد. پاسخ رشد میکوریزایی از 26/32- تا 78/48+ درصد در علف­های هرز، متفاوت بود. با توجه به واکنش متفاوت گندم و برخی از گونه­های علف ‌هرز مورد بررسی مانند چاودار، یولاف وحشی و گندمک به تلقیح قارچ­های میکوریزایی و شبه­میکوریزایی، به­نظر می‌رسد کاربرد قارچ‌های مذکور در مزارع گندم بتواند خسارت علف­های هرز یادشده را کاهش دهد.

جزئیات مقاله

کلمات کلیدی

پاسخ رشدی, کلونی‌سازی, قارچ گلوموس, قارچ پیریفورموسپورا

مراجع
Abourghiba T.Y. 2005. Comparative analysis of the impacts of AMF on host and non-host plants. PhD thesis, University of Sheffield, UK.
2- Al-Qarawi A.A. 2002. Relationships among nitrogen availability. Vesicular-Arbascular mycorrhizae, and Bromus tectorum in disturbed rangeland sites in Colorado. PhD thesis, Colorado State University Fort Collins, Colorado.
3- Busby R.R. 2011. Chaetgrass (Bromus tectorum) interactions with arbascular mycorrhizal fungi in the North American steppe: prevalence and diversity of associations, and divergence from native vegetation. Graduate Degree Program in Ecology. Ph.D. thesis, Colorado State University .Fort Collins, Colorado.
4- Brundrett M.C. 2002. Coevolution of roots and mycorrhiza of land plants. New Phytologist 145: 257-304.
5- Bennett A.E., and Bever J.D. 2007. Mycorrhizal species differentially alter plant growth and response to herbivory. Journal of Ecology 88: 210-218.
6- Cameron D.D. 2010. Arbascular mycorrhizal fungi as agro ecosystem engineers. Plant Soil 33:1-5.
7- Daisog H., Sbrana C., Cristani C., Moonen A.C., Giovannetti M., and Barberi P. 2012. Arbascular mycorrhizal fungi shift competitive relationships among crop and weed species. Plant Soil 353: 395-408.
8- Das A., Rrasad R.B., Srivastava S. Deshmukh M.K., and Rai A. 2013. Cultivation of Pirifoemospora indica with medicinal plants: case study. Soil Biology 33: 149-171.
9-Dehghan M., and Ahmadvand G. 2018. Effect of Piriformospora indica on seedling growth of canola and some weed species. Weed Research Journal 9: 43-51.
10- Francis R., and Read D.J. 1995. Mutualism and antagonism in the mycorrhizal symbiosis, with special reference to impacts on plant community structure. Canadian Journal of Botany 73: 1301-1309.
11- Ghahfarokhi R.M., and Goltapeh M.E. 2010. Potential of the root entophytic fungus Piriformospora indica, Sebacina vermifera and Trichoderma species in bio control of take-all disease of wheat Gaeumannomyces graminis var. tritici in vitro, in Iran. Journal of Agricultural Science and Technology 6: 8-11. (In Persian with English abstract)
12- Giovanetti M., and Mosse B. 1980. An evaluation of techniques for measuring vesicular mycorrhizal infection in roots. New Phytologist 97: 447-453.
13- Jordan N.R., Zhang J., and Huard S. 2000. Arbuscular- mycorrhizal fungi: potential roles in weed management. Weed Research 40: 397-410.
14- Hajinia S., Zarea, M.J., Mohammadi Goltapeh E., and Rejali F. 2012. Investigating the efficacy of endophytic fungus Piriformospora indica and Azospirillum strains on alleviation of detrimental effect of salt stress on wheat (Ttiticum aestivum cv.sardari). Journal of Environmental stresses in Crop Sciences 1: 21-31. (In Persian with English abstract)
15- Hill T.W., and Kaefer E. 2001. Improved protocols for Aspergillums medium: trace elements and minimum medium salt stock solutions. Fungal Genetics Newsl 48: 20-21.
16- Kari Dolatabadi H., and Mohammadi Goltapeh M. 2013. Effect of inoculation with Piriformospora indica and Sebacina vermifera on growth of selected Brassicaceae plants under greenhouse conditions. Journal Horticultural Research 21(2): 115-124.
17- Kennedy L.J., Tiller R.L., and Stutz J.C. 2002. Associations between arbuscular mycorrhizal fungi and Sporobolus wrightii in riparian habitats in arid South-western North America. Journal Arid Environments 50: 459-475.
18- Khazaei M., and Farhangfar H. 2010. Statistical experiment design and interrelation an introduction with agricultural examples. University of Birjand. (In Persian with English abstract)
19- Kumari R., Kishan H., Bhoom Y.K., and Varma A. 2003. Colonization of cruciferous plants by Piriformpspora indica. Current Science 85: 1672-1674.
20- Massenssini A.M., Araujo Bonduki V.H., Totola M.R., Ferreria F.A., and Costa M.D. 2014. Arbasculare mycorrhizal associations and occurrence of dark septate endophytes in the roots of Brazilian weed plants. Mycorrhiza 24: 153-159.
21- Nadian H. 2011. Effect of drought stress and mycorrhizal symbiosis on growth and phosphorus uptake by two Sorghum cultivars different in root morphology. Journal of Water and Soil Science 57: 127-139. (In Persian with English abstract)
22- Oelmuller R., Sherameti I., Tripathi S., and Varma A. 2009. Piriformospora indica, a cultivable root entophyte with multiple biotechnological applications. Symbiosis 49: 1-17.
23- Rabiey M., Ullah I., Show L.J., and Show M.W. 2017. Potential ecological effects of Piriformospora indica, a possible biocontrol agent, in UK agricultural systems. Biological control 104: 1-9.
24- Rejali F., Esmaeilizad A., and Torkashvand A. 2014. Studying the possibility of in vitro cultivation of three Arbuscular mycorrhizal species. Journal soil Biology 2(1): 33-41. (In Persian with English abstract)
25- Rinaudo V., Baarberi P., Giovannetti M., and Van Der Heijden M.G.A. 2010. Mycorrhizal fungi suppress aggressive agricultural weeds. Plant Soil 333: 7-20.
26- Rowe H.I., Brown C.S., and Claassen V.P. 2007. Comparisons of mycorrhizal responsiveness with field soil and commercial inoculum for six native Montana species and Bromus tectorum. Restoration Ecology 15: 44-52.
27- Santos E.A., Ferreira L.R., Costa M.D., Silva M.C.S., Reis M.R.R., and Franca A.C. 2013. Occurrence of symbiotic fungi and rhizospheric phosphate solubilization in weeds. Acta Scientiarum Agronomy 35(1): 49-55.
28- Schechter S.P. and Bruns T.D. 2008. Serpentine and non-serpentine ecotypes of Collinsia sparsiflora associate with distinct arbuscular mycorrhizal fungal assemblages. Molecular Ecolog 17: 3198-3210
29- Singh A., Sharma J., Rexer K.H., and Varma A. 2000. Plant productivity determinates beyond minerals, water and light: Piriformospora indica. A revolutionary plant growth promoting fungus. Current Science 79(11): 1548-1554.
30- Tahira J.J., Khan S.N., Anwar W., and Suliman R. 2012. Mycorrhiza association in some weeds of curcuma longa field of district kasur, Pakistan. Pakistan Journal of Weed Science 18(3): 331-335.
31- Tyagi J., Varma A., and Pudake R. N. 2017. Evaluation of comparative effects of arbascular mycorrhiza (Rhizophagus intraradices) and endophyte (Piriformospora indica) association with finger millet (Eleusine coracana) under drought stress. European Journal of Soil Biology 81: 1-10.
32- Varma A., Verma S., Sahay N.S., Butehorn B., and Franken P. 1999. Piriformospora indica, a cultivable plant growth promoting root endophyte. Applied and Environmental Microbiology 64: 2741-2744.
33- Varma A., Singh A., Sudha S., Sahay N., Sharma J., Roy A., Kumari M., Rana D., Thakran S., Deka D., Bharti K., Franken P., Hurek T., Blechert O., Rexer K.H., Kost G., Hahn A., Hock B., Maier W., Walter M., Strack D., and Kranner I. 2001. Piriformospora indica: a cultivable mycorrhiza-like endosymbiotic fungus. In: Varma, A., Hock, B. (Eds.), Mycota IX. Springer, Berlin Heidelberg New York, pp. 123-150.
34- Varma A., Bakshi M., Lou B., Hartmann A., and Oelmuller R. 2012. Functions of a novel plant growth- promoting mycorrhizal fungus: Piriformospora indica. Agricultursl Research 1(2): 117-131.
35- Veiga R.S.L., Jansa J., Frossard E., and Van der Heijden M.G.A. 2011. Can arbuscular mycorrhizal fungi reduce the growth of agricultural weeds? pLoS ONE 6(12): 1-10.
36- Veiga R.S.L., Howard K., Marcel M., and Van der Heijden M.G.A. 2012. No evidence for allelopathic effects of arbuscular mycorrhizal fungi on the non-host Stellaria media. Plant Soil 360: 319-331.
37- Vatovec C., Jordan N., and Huerd S.C. 2005. Responsiveness of certain agronomic weed species to arbuscular mycorrhizal fungi. Renewable Agriculture and Food Systems 20: 181-189.
38- Wang B., and Qui Y.L. 2006. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16: 299-363.
39- Yaghoubian Y., Mohammadi Goltapeh E., Pirdashti H., Esfandiari E., Feiziasl V., Kari Dolatabadi H., Varma A., and Hartani Hassim M. 2014. Effect of Glomus mossea and Piriformospora indica on growth and antioxidant defense responses of wheat Plants under drought stress. Agricultural Research 3(3): 239-245.
ارجاع به مقاله
احمدوندگ., دهقان بنادکیم., & زندا. (2020). اثر قارچ¬های میکوریزایی Glomus mosseae و شبه¬میکوریزایی Piriformospora indica بر رشد گیاه¬چه گندم و چند گونه علف هرز. مطالعات حفاظت گیاهان, 34(1), 55-65. https://doi.org/10.22067/jpp.v34i1.74808
نوع مقاله
علمی - پژوهشی