کُنش پیوسته برخی از مهمترین پهن‌برگ‌کش‌های قابل کاربرد در مزارع چغندرقند (Beta vulgaris L.) ایران

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشگاه لرستان

2 دانشگاه فردوسی مشهد

3 دانشکده کشاورزی

چکیده

ارزیابی اثرات اختلاط مواد شیمیایی می‌تواند براساس مفاهیم مختلف سمیت شناسی، داروشناسی و کنترل علف‌های‌هرز انجام گیرد. به‌منظور پیش‌بینی اثرات افزایشی، هم‌افزایی و یا هم‌کاهی اختلاط دو به دو مخلوط علفکشی دس‌مدیفام+ فن‌مدیفام+ اتوفومیست، کلریدازون و کلوپیرالید روی علف‌های‌هرز تاج‌ریزی سیاه و تاج‌خروس ریشه قرمز، دو آزمایش بصورت دُز- پاسخ در گلخانه تحقیقاتی دانشکده کشاورزی دانشگاه فردوسی مشهد در قالب طرح کاملاً تصادفی با 105 تیمار در سال 1392 به اجرا درآمدند. تیمارهای آزمایش شامل هفت دُز خالص و مخلوط از علف‌کش‌های فوق با پنج نسبت اختلاط 100:0، 75:25، 50:50، 25:75 و 0:100 بودند و برای هر یک از اختلاط‌ها سه تیمار شاهد در نظر گرفته شد. نتایج آزمایش نشان داد که اختلاط علف‌کش دس‌مدیفام + فن‌مدیفام + اتوفومیست با علف‌کش کلوپیرالید روی علف‌هرز تاج‌ریزی سیاه از حالت هم‌افزایی و در مورد علف‌هرز تاج‌خروس ریشه قرمز بیشتر از حالت هم‌افزایی تبعیت کرد. اختلاط علف‌کش کلریدازون با علف‌کش کلوپیرالید بر روی هر دو علف‌هرز بیشتر از حالت هم‌کاهی تبعیت کرد، بطوری‌که شدت اثرات هم‌کاهی در تاج‌خروس ریشه قرمز بیشتر از تاج‌ریزی سیاه بود. همچنین، اثرات اختلاط علف‌کش دس‌مدیفام + فن‌مدیفام + اتوفومیست با کلریدازون روی علف‌هرز تاج‌ریزی سیاه بیشتر از حالت افزایشی و در مورد تاج خروس ریشه قرمز بیشتر از حالت هم‌کاهی تبعیت کرد. کاهش کارایی اختلاط‌های علف‌کشی می‌تواند به دلیل محدودیت در جذب و انتقال علف‌کش‌ها باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Joint action of some usable important broadleaf herbicides in sugar beet

نویسندگان [English]

  • AliAsghar Chitband 1
  • Reza Ghorbani 2
  • Mohammad hasan rashed 3
  • Mahbubeh Nabizade 2
1 Lorestan University
2 Ferdowsi University of Mashhad
چکیده [English]

Introduction: The assessment of the effect of mixtures could be based on various concepts whether we work within toxicology, pharmacology or weed control. Combinations of certain herbicides can give better weed control than use of the individual herbicide alone and/or loss of weed control when use of certain other herbicides in combination. Predicting the joint action of mixtures is extremely difficult, unless the compounds are known to interact at the same site of action. These most common methods to analyze the joint action of herbicide mixtures are the Additive Dose Model (ADM) or the Multiplicative Survival Model (MSM). The ADM assumes the two compounds have similar modes of action (do not interact) in the receiver plant, i.e. effective doses of each component will not change by mixing. ADM has been widely accepted as a valid method to estimate joint action of mixtures sharing the same or similar action mechanisms in the receiver plant. MSM has been reported to yield more accurate results for mixture toxicity than ADM do when the components exhibited different or dissimilar modes of action in the receiver plant. ADM or Concentration Addition (CA) is used here to test for deviation of additivity of doses using the ADM isoboles as reference; any deviation from the ADM is characterized by antagonism when the efficacy of a mixture is lower than predicted by the reference model and synergistic when the efficacy is higher than predicted.
Materials and Methods: In order to determine joint action of some usable important broadleaf herbicides in sugar beet, six experiments were conducted at the research glasshouse in Faculty of Agriculture, Ferdowsi University of Mashhad, Iran. The plants were sprayed with seven doses of commercial formulation of desmedipham + phenmedipham + ethofumesate (Betanal Progress- OF®, 427 g a.i. L-1, Tragusa, Spain), chloridazon (Pyramin®, 1361 g a.i. L-1, BASF, Germany), clopyralid (Lontrel®, 149 g a.i. L-1, Golsam, Gorgan, Iran) either alone or in binary fixed-ratio mixtures of the three herbicides. The ratio of the herbicides of the binary mixtures were chosen with the aim of obtaining a contribution to the overall effect of the two herbicides of 100:0, 75:25, 50:50, 25:75, and 0:100 for seven-mixture-ratio experiments. Spraying was performed by overhead trolley sprayer (Matabi 121030 Super Agro 20 litre sprayer), 8002 flat-fan nozzle at 300 kPa and a spray volume of 200 Lha-1. The plants were treated at 21 days (at the four- to six-true leaf stage) after planting. Dose-response curves were estimated by fitting a three log-logistic dose–response model against dose for ED50 and ED90 response levels. ADM was used as reference model of joint action with their equations. As the results with the herbicide mixtures originate from up to twelve separate experiments it was necessary to standardize the x- and y-axes so that the ED50, ED80 and ED90 doses of the herbicides applied separately were always fixed to 1.
Results Discussion: The results showed that mixtures of chloridazon and clopyralid were less phytotoxic than predicted by ADM particularly in Amaranthus retroflexus at ED50 and ED80 response levels. These binary mixtures of herbicides were either followed ADM or less than predicted by ADM in Solanum nigrum. In contrast, mixture of desmedipham + phenmedipham + ethofumesate and clopyralid was synergistic in both species. Whereas desmedipham + phenmedipham + ethofumesate and chloridazon binary mixture was synergistic in Solanum nigrum to followed according to ADM in Amaranthus retroflexus.
Conclusion: The present study has revealed that mixtures of photosystem II, lipid biosynthesis and auxin inhibitor herbicides either followed ADM, or performed better than predicted by ADM, i.e. applying mixtures of these herbicides will not result in an excessive use of herbicide compared to applying the herbicides separately. In contrast, mixtures of chloridazon and clopyralid were trend antagonistic and the two herbicides should not be applied in mixture.

کلیدواژه‌ها [English]

  • additive dose model
  • Antagonism
  • binary mixture
  • desmedipham + phenmedipham + ethofumesate
  • Synergism
1- Abbaspoor M., Chitband A.A., Molkara M.R., and Tavakoli H. 2013. Isobolographic analysis for additive, Synergism and antagonism effects in binary mixture of glyphosate and clopyralid on Acroptylon repense. Journal of Plant Protection, 27(3): 294-300. (In Persian with English abstract).
2- Abdollahi F., and Ghadiri H. 2004. Effect of separate and combined applications of herbicides on weed control and yield of sugar beet. Weed Technology, 18: 968-976.
3- Barnes J.W., and Oliver L.R. 2004. Cloransulam antagonizes annual grass control with aryloxyphenoxy propionate graminicides but not cyclohexanediones1. Weed Technology, 18: 763-772.
4- Brautigram H. 1995. Does nitrogen fertilizer affect weed populations in sugar beet? PSP Pflanzenschutz-Praxis, 1: 24-26.
5- Chitband A.A., Ghorbani R., Rashed Mohassel M.H. Zare A., and Abbaspoor M. 2013. Isobolographic analysis for additive, synergism and antagonism in binary mixture of mesosulfuron + iodosulfuron and clodinafop-propargyl and optimizing them with citowett and frigate surfactants on wild oat (Avena ludoviciana). Iranian Society of Weed Science, 9: 93-104. (In Persian with English abstract).
6- Chitband A.A., Ghorbani R., Rashed Mohassel M.H., Nassiri Mahallati M., and Abbasi R. 2015. Joint action of photosynthesis + lipid and auxin-inhibiting herbicides in sugar beet. p. 817-822. In Proceeding of the 6th Iranian Weed Science Congress, 1-3 Sep. 2015. Birjand, Iran. (In Persian with English abstract)
7- Chitband, A.A., Abbaspoor, M. and Nabizade, M. 2012. Utilizing drc package in R software for dose-response studies: The concept and data analysis. P. 1-5. In Proceeding of the 12th Iranian Crop Sciences Congress, 4-6 Sep. 2012. Islamic Azad University, Karaj. Iran. (In Persian with English abstract).
8- Chitband A.A., Ghorbani R., Rashed Mohassel M.H., Abbaspoor M., and Abbasi, R. 2015. Reduced dose of PSII + fatty acid inhibitors herbicides and clopyralid mixtures and their chlorophyll fluorescence evaluation to control important broadleaf weeds in Sugar beet (Beta vulgaris L.). Ph.D. Dissertation. Ferdowsi University of Mashhad. (In Persian with English abstract).
9- Dale T.M., Renner K.A., and Kravchenko A.N. 2006. Effect of herbicides on weed control and sugarbeet (Beta vulgaris) yield and quality. Weed Technology, 20: 150–156.
10- Devilliers B.L., Kudsk P., Smit J.J., and Mathiassen S.K. 2001. Tralkoxydim: adjuvant, MCPA and other effects. Weed Research, 41: 547-556.
11- Devine M.D., and Vanden Born W.H. 1985. Translocation and foliar activity of clopyralid and chlorsulfuron in Canada thistle and perennial sowthistle. Weed Science, 33: 524-530.
12- Dexter A.G. 1998. Weed control guide for sugar beet. www.sbreb.org/98/weed/98p3.htm.
13- Gamuev V.V., Vilkov V., and Repina G. 1996. Sugar beet protection based on a Betanal system. Sakharnaya Svekla, 3: 21-23.
14- Gessner P.K. 1995. Isobolographic analysis of interactions: an update on applications and utility. Toxicology, 105: 161- I79.
15- Gonik G.E., and Val'ko A.P. 1996. How to increase the effectiveness of Centurion. Sakharnaya Svekla, 1: 8-9.
16- Hatzios K.K., and Penner D. 1985. Interactions of herbicides with other agrochemicals in higher plants. Review. Weed Science, 1: 1-63.
17- Hendrick L.W., Meggitt W.F., and Penner D. 1974. Basis for selectivity of phenmedipham and desmedipham on wild mustard, redroot pigweed, and sugar beets. Weed Science, 22: 179–184.
18- Kortenkamp A., and Altenburger R. 1998. Synergisms with mixtures of xenoestrogens: A reevaluation using the method of isoboles. The Science of the Total Environment, 221: 59-73.
19- Kotting K., and Zink J. 1992. Present requirements for a beet herbicide reflected in betanal progress. Germany Gesunde Pflanzen, 44(2): 60-64.
20- Kudsk P. 2008. Optimising herbicide dose: a straightforward approach to reduce the risk of side effects of herbicides. Environmentalist, 28: 49–55.
21- Kudsk P., and Mathiassen S.K. 2004. Joint action of amino acid biosynthesis inhibiting herbicides. Weed Research, 44: 313-322.
22- Kudsk P., and Streibig J.C. 2003. Herbicides-a two edged sword. Weed Research, 43: 90–102.
23- Paradowski A., and Praczyk T. 2004. Evaluation of selected mixtures of active ingredients for weed control in sugar beet. Progress in Plant Protection, 44(2): 1004-1007.
24- Petersen J. 2004. A review on weed control in sugar beet. p. 467–515. In Inderjit (ed.) Weed Biology and Management, Dordrecht (The Netherlands). Springer Netherlands.
25- Sobye K.W., Streibig, J.C., and Cedergreen, N. 2011. Prediction of joint herbicide action by biomass and chlorophyll a fluorescence. Weed Research, 51: 23–32.
26- Sørensen V.M., Meggitt W.F., and Penner D. 1987. The interaction of acifluorfen and bentazon in herbicidal combinations. Weed Science, 35: 449–56.
27- Streibig J.C. 1988. Herbicide bioassay. Weed Research, 28: 479-484.
28- Streibig J.C., Kudsk P., and Jensen J.E. 1998. A general joint action model for herbicide mixture. Pesticide Science, 53: 21- 28.
29- Streibig J.C., and Jensen J.E. 2000. Actions of herbicides in mixtures. In: Herbicides and Their Mechanisms of Ac-tion. A.H. Cobb and R.C. Kirkwood, Eds., Sheffield Academic Press, Boca Raton, FL: CRC Press, 295 pp. England, UK
30- Tammes P.M.L. 1964. Isoboles, a graphic representation of synergism in pesticides. Netherland Journal of Plant Path, 70: 73-80.
31- Vencil W.K. 2002. Herbicide handbook. 8th edition. Weed Sci Society of America. Lawernce, KS. USA. p. 493.
32- Wesley M.T., and Shaw D.R. 1992. Interactions of diphenyl-ether herbicides with chlorimuron and imazaquin. Weed Technology, 6: 345–51.
33- Zand E., Baghestani M.A., Nezamabadi N. and Shimi P. 2011. Herbicides and important weeds in Iran. University Press Center. p. 143.
34- Zhang J., Hamill A.S., and Weaver S.E. 1995. Antagonism and synergism between herbicides: trends from previous studies. Weed Technology, 9: 86–90.
CAPTCHA Image