بررسی تأثیر مایکوریزا و آزوسپیریلوم بر مقاومت ارقام گندم به زنگ زرد

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشگاه آزاد اسلامی واحد اراک

2 دانشگاه آزاد اسلامی، گرگان

3 دانشگاه آزاد اسلامی، اراک

چکیده

به منظور بررسی تأثیر مایکوریزا و آزوسپیریلوم در میزان مقاومت به بیماری زنگ زرد در ارقام گندم پژوهشی در سال زراعی 1392-1391 در مزرعه تحقیقاتی دانشگاه شهید چمران اهواز اجرا شد. طرح آزمایشی به صورت فاکتوریل در قالب بلوک کامل تصادفی و در 3 تکرار بود. عوامل آزمایش شامل قارچ مایکوریزا در سه سطح (عدم کاربرد، استفاده از گونهGlomus intraradices و G. mosseae)، باکتری lipoferum Azospirillum در دو سطح (عدم تلقیح و تلقیح بذور با قارچ) و ارقام گندم در سه سطح شامل رقم چمران، ارقام دوروم دنا و بهرنگ بود. در این آزمایش شدت آلودگی، میانگین ضریب آلودگی، تیپ آلودگی و سطح زیر منحنی پیشرفت بیماری (AUDPC) زنگ مورد ارزیابی قرار گرفت. یادداشت برداری از شدت و تیپ آلودگی در مرحله برگ پرچم با مقیاس اصلاح شده کب صورت گرفت. اولین علائم ظهور زنگ زرد در محل اجرای آزمایش در نیمه بهمن ماه سال 91 مشاهده شد. نتایج تجزیه واریانس نشان داد که تلقیح بذور با آزوسپیریلوم صفات اندازه‎گیری شده را بین 10 تا 13 درصد کاهش داد. استفاده از مایکوریزا شدت آلودگی را 45-51 درصد، میانگین ضریب آلودگی و (AUDPC) را 74-85 درصد به ترتیب برای گونه های G. intraradices و G. mosseae نسبت به تیمار کنترل کاهش داد. رقم چمران بین 40-70 درصد از ارقام دوروم حساسیت بیشتری به بیماری نشان داد. به طور کلی کمترین شدت آلودگی (33/18) از تیمار تلقیح بذور رقم دنا با آزوسپیریلوم و استفاده از گونه G. mosseae به دست آمد.

کلیدواژه‌ها


عنوان مقاله [English]

Survey the Effect of Mycorrhiza and Azospirillum of Wheat Cultivars Resistance in Yellow Rust

نویسندگان [English]

  • M. Jiriaie 1
  • H. Eslami 2
  • A. Rostami 3
1 Islamic Azad University, Arak
2 Islamic Azad University, Gorgan
3 Islamic Azad University, Arak
چکیده [English]

Introduction: Wheat is one of the major agricultural crops with respect to human nutrition. It is cultivated over a wide range of environments, because of wide adaptation to diverse environmental conditions. In Iran, 6.2 million hectares are under wheat cultivation, of which 33% is irrigated and 67% is rain-fed, the irrigated wheat growing areas (2 million hectares) are located mostly in southern, central and east of Iran Production of crops is under the influence of plant genetic structure, environmental conditions and their interactions. Biotic and abiotic stresses are considered to lower production. Among the biotic stress, the fungal disease is the main factor limiting production of crop plants in hot and humid regions. Stripe rust was not a serious economic concern to the wheat industry for most of the 1990’s due to the use of resistant varieties. However, by 2003 it had developed into a significant issue, particularly as new path types evolved. Even in the dry years of 2003 and 2004, stripe rust cost growers significant income. Provide country's need for wheat as a strategic product, meanwhile, production is free from chemical fungicide is a high but achievable goal. So in order to achieve fertilizer and fungicide resources that in addition to having no adverse effects on consumers and the environment, has been economically able to provide nutrition need of crop plant, is very important.
Materials and Methods: With this approach, to survey the effect of Mycorrhiza and Azospirillum in resistance to yellow rust in wheat cultivars, an experiment was conducted at the research station of the Shahid Chamran University of Ahvaz, Iran in 2012-13. The experimental design was factorial based on a randomized complete block design with three replications. The treatments include of Mycorrhiza fungi in three levels (without application of Mycorrhiza strain and using strain Glomus intraradices and Glomus mosseae), Azospirillum lipoferum bacterium in two-levels (non-inoculated seeds and inoculated seed) and wheat cultivars in three levels, Chamran (bread wheat), Dena and Behrang (durum wheat) varieties. In this experiment evaluated, to yellow rust disease, the intensity of infection, the average coefficient of infection, type of infection and area under disease progress curve (AUDPC). Infection type and disease severity were also recorded at flag leaf stage using modified Cobb’s scale. First symptoms of yellow rust were observed in middle January of 2013. Analysis of variance was performed using PROC ANOVA of SAS (version 9.1.3, 2004The comparison of the means was done by Duncan test at a probability level of 5 percent.
Results and Discussion: Survey on the resistance to yellow rust in wheat cultivars treated with Mycorrhiza and Azospirillum showed that seed inoculation with Azospirillum traits reduced between 10 percent to 13 percent and the use strains of Mycorrhiza fungi intensity of infection 45-51 percent, the average coefficient of infection and AUDPC 74-85 percent respectively for G. intraradices and G. mosseae strains have been reduced compared with control and Chamran cultivar between 40-70 percent showed more Sensitivity to disease from durum varieties. Generally, the lowest of infection intensity (18.33) was obtained from inoculation of C.V Dena seeds with Azospirillum and G. mosseae strain. According to the result, we found yellow rust in all experiment field also the incidence varied between 10-70 percent. Therefore, it is concluded that, given the climatic conditions favorable to the spread of yellow rust, the incidence of yellow rust in the region that have a high degree of pathogenicity. In general the results of this test, mycorrhiza application has a significant role in enhancing wheat resistance to yellow rust. The seed inoculation with Azospirillum although did not have significant role in disease control, but increased at an acceptable level resistance to wheat rust. But the important point was the combined use of fungi and bacteria the synergistic effect of the two substances for all traits were assessed, leading to an increase of more than 20 percent in the wheat varieties resistant to rust.
Conclusion: Generally associated with resistance to yellow rust in wheat cultivars inoculation with A. lipoferum and usage of G. mosseae in Dena cultivar that was durum wheat, showed the highest resistance to yellow rust, probably this has been due to the Dena cultivar which is durum wheat. It seems, use of the biofertilizers can be the perfect solution to eliminate the nutritional requirements of wheat, in addition, it has been an important effect in enhancing resistance to yellow rust.

کلیدواژه‌ها [English]

  • Bacteria
  • Dena cultivar
  • Disease Severity
  • Flag leaf
  • Fungi
1- Afshari F. 2003. Studies on rust resistance in wheat with particular emphasis on stripe rust. Ph.D. Thesis, University of Sydney, Australia. 252 p.
2- Agrios G.N. 2004. Plant Pathology, 4th edition on Academic Press. 635 p.
3- Amooaghaie R., Mostajeran A., and Emtiazi G. 2003. The effect of Azospirillum strains bacteria concentration on the growth of wheat roots. Journal of Agricultural Science, 33 (2): 222-213. (In Persian)
4- Balol G.B., Shilpa Kumari M.V., Raaghavendra M., and Divya B. 2012. Role of Mycorrhizae in Plant Disease Management. Research Journal of Agricultural Sciences, (3): 1. 01-09.
5- Bashan Y., and de-Bashan LE. 2002. Reduction of bacterial speck (Pseudomonas syringae pv. tomato) of tomato by combined treatments of plant growth-promoting bacterium, Azospirillum brasilense, streptomycin sulfate, and chemo-thermal seed treatment. European Journal Plant Pathology, 108:821–829.
6- Bjarko M. E., and Line R.F. 1988; Heritability and number of genes controlling leaf rust resistance in four cultivars of wheat. Phytopathology, 78: 457-461.
7- Campos-Soriano L., A-Martinez J.G., and San Segundo B. 2011. The Arbuscular Mycorrhizal symbiosis promotes the systemic induction of regulatory defense-related genes in rice leaves and confers resistance to pathogen infection. Molecular Plant Pathology, 1-14.
8- Campos-Soriano L., and San Segundo B. 2009. Assessment of blast disease resistance in transgenic PRMS rice using a gfp-expressing Magnaporthe oryzae strain. Plant Pathology, 58: 677–689.
9- De la Noval B., Perez E., Martinez B., Leon O., Martinez-Gallardo N., and Frier J. 2007. Exogenous systemin has a contrasting effect on disease resistance in mycorrhizal tomato Solanum lycopersicum plants infected with necrotrophic or hemibiotrophic pathogens. Mycorrhiza, 17: 449–460.
10- Egamberdiyevaa D., and Hoflich G., 2003. Influence of growth-promoting bacteria on the growth of wheat in different soils and temperatures. Soil Biol. Biochem, 35: 973–978.
11- El-Hamshary OIM., El-Gebally OG., Abou-El-Khier ZA., Arafa RA., and Mousa S.A. 2010. Enhancement of the chitinolytic properties of Azospirillum strain against plant pathogens via transformation. Journal American Science, 6:169–176.
12- Higa T. 2000. What is EM Technology? EM World Journal, 1: 1-6.
13- Huang J., Luo S., and Zeng R. 2003. Mechanisms of plant disease resistance induced by arbuscular mycorrhizal fungi. Journal Public Medical, 14(5):819-22.
14- Leon-Reyes A., Spoel S.H., De Lange E.S., Abe H., Kobayashi M., Tsuda S., Millenaar F.F., Welschen R.A., Ritsema T., and Pieterse C.M. 2009. Ethylene modulates the role of Nonexpressor of Pathogenesis-Related genes1 in cross talk between salicylate and jasmonate signaling. Plant Physiology, 149: 1797–1809.
15- Liu J., Maldonado-Mendoza I., Lopez-Meyer M., Cheung F., Town C.D., and Harrison M.J. 2007. Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. Plant Journal, 50: 529–544.
16- Mostajeran A., Amooaghaie B., and Emtiazi G. 2005. The effect Azospirillum and pH irrigation water on yield and protein content of wheat cultivars. Journal of Biology, 18(3): 248-260. (In Persian)
17- Peterson R.F., Campbell A.B., and Hannah A.E. 1948. A diagrammatic scale for estimating rust intensity of leaves and stems of cereals. Canadian Journal Research, 26: 496-500.
18- Pieterse C.M., Leon-Reyes A., Van der Ent S., and Van Wees S.C.M. 2009. Networking by small-molecule hormones in plant immunity. Natural Chemical Biology, 5: 308–316.
19- Pozo M.J., and Azcon-Aguilar C. 2007. Unraveling Mycorrhiza-induced resistance. Plant Biology, 10, 393–398.
20- Pozo M.J., Jung S.C., Lopez-Raez J.A., and Azcon-Aguilar C. 2010. Impact of arbuscular mycorrhizal symbiosis on plant response to biotic stress: the role of plant defence mechanisms. In: Arbuscular Mycorrhizas: Physiology and Function (Koltai, H. and Kapulnik, Y., eds), pp. 193–207. Heidelberg: Springer.
21- Rejali F., Alizadeh A., Salehrastin N., Malakouti M.J., Khavazi K., and Asgharzadeh A. 2006. In vitro preparation and reproduction of inoculant of Glomus intraradices. Iranian Journal of Soil Research (Formerly soil and water science), 20(2): 273-283.
22- Roelfs A.P., Singh R.P., and Saari E.E. 1992. Rust Diseases of Wheat, Concepts and Methods of. Disease Management. CIMMYT, Mexico. 81 p.
23- Safavi P., and Turabi D. 2008. Evaluation of promising wheat lines resistance (C-81) climate green to yellow rust in Ardabil. Research and development in agriculture and horticulture, 187-179.
24- SAS 9.01.3 Copyright (c) 2004. By SAS Institute Inc., cary, nc, USA. SAS (r) Proprietary Software Version 9.00 (TS M0).
25- Singh G., and Mukerji K.G. 2006. Root exudates as determinant of rhizospheric microbial diversity. In, Microbial activity in the rhizosphere. K.G. Mukerji, C. Manoharachary J. Singh eds. Springer Verlag, Berlin, Heidelberg, 39-55.
26- Smith S., and Read D. 2008. Mycorrhizal Symbiosis. London: Academic Press.
27- Tortora ML., Diaz Ricci J.C., and Pedraza RO. 2011. Azospirillum brasilense siderophores with antifungal activity against Colletotrichum acutatum. Archive Microbiology 193:275–286. doi:10.1007/s00203-010-0672-7
28- Van der Ent S., VanWees S.C.M., and Pieterse C.M. 2009. Jasmonate signaling in plant interactions with resistance-inducing beneficial microbes. Photochemistry, 70. 1581–1588.
29- Wayne AS. 2009. The incidence of yellow rust of wheat in irrigated fields in cold regions Kohgiluyeh and Boyer ahmad. Journal of Agricultural Sciences and Natural Resources, 16 (2): 67-78.
30- Whipps J.M. 2004. Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Canadian Journal Botany, 82: 1198–1227.
31- Yasuda M., Isawa T., Minamisawa K., Shinozaki S., and Nakashita H. 2009. Effects of colonization of a bacterial endophyte, Azospirillum sp. B510 on disease resistance in rice. Bio Science Biotechnology Biochemical, 73:2595–2599. doi:10.1271/ bbb.90402.
32- Zegg R.S. 2006. Disease resistance in plants through Mycorrhiza fungi induced allelochemicals. Springer: Biological Control of Plant Pathogens and Diseases, 181-192.
CAPTCHA Image