برهم‌کنش محدودیت تشعشع و نیتروژن بر رقابت دو گیاه چهارکربنه ارزن دم‌روباهی (Setaria italica L.) و تاج‌خروس سفید (Amaranthus albus L.)

نوع مقاله : مقالات پژوهشی

نویسندگان

دانشگاه بیرجند

چکیده

به‌منظور بررسی توان رقابتی علف‌هرز تاج‌خروس سفید در مزرعه ارزن و واکنش رشد و عملکرد این گیاهان به برهم‌کنش مقادیر مختلف تشعشع و نیتروژن، دو آزمایش مجزا بصورت کرت‌های خرد شده در قالب طرح بلوک‌های کامل تصادفی با سه تکرار در سال 1394 در مزرعه تحقیقاتی دانشکده کشاورزی دانشگاه بیرجند انجام گرفت. تشعشع به عنوان عامل اصلی در سه سطح (عدم سایه‌دهی، 41 و 75 درصد سایه‌دهی) و تراکم تاج‌خروس سفید به عنوان عامل فرعی در سه سطح (0، 12 و 24 بوته در متر مربع) در دو آزمایش مجزا، یکی در شرایط کاربرد 150 کیلوگرم در هکتار کود نیتروژن و دیگری در شرایط عدم کاربرد نیتروژن بررسی گردید. کاربرد نیتروژن باعث افزایش معنی‌دار ارتفاع، درصد ورس، تعداد برگ، طول پانیکول، زیست توده و عملکرد دانه ارزن و همچنین ارتفاع تاج‌خروس سفید گردید. سایه‌دهی در سطح 75 درصد منجر به افزایش درصد ورس ارزن و کاهش زیست توده و عملکرد دانه آن گردید و در عین حال ارتفاع بوته تاج‌خروس را افزایش و تعداد شاخه و بذر آن را کاهش داد. تأثیر تراکم تاج‌خروس سفید نیز بر ارتفاع، قطر ساقه و عملکرد دانه ارزن و همچنین ارتفاع، تعداد شاخه‌های فرعی و تعداد بذر در بوته تاج‌خروس سفید معنی‌دار بود و در بالاترین سطح منجر به کاهش 21 درصدی عملکرد دانه ارزن در مقایسه با شاهد گردید. بر اساس نتایج، سایه می‌تواند باعث کاهش تعداد شاخه‌های فرعی و کاهش تولید بذر در تاج‌خروس شود. همچنین به نظر می‌رسد کمبود نیتروژن، کاهش قدرت رقابت علف‌هرز و از طرف دیگر کاهش تولید بذر و ایجاد آلودگی کمتری را به دنبال دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Combined Effects of Radiation and Nitrogen Limitations on Competition of Two C4 Plants Foxtail Millet (Setaria italica L.) and Pigweed (Amaranthus albus L.)

نویسندگان [English]

  • sara parande
  • seyed vahid eslami
  • majid jamialahmadi
University of Birjand
چکیده [English]

Introduction: Light is a vital component for photosynthesis and plays a significant role in the competitive ability of plants. The nitrogen response of competing plants may be affected by radiation availability and maximum potential growth rate, which determine N requirements. Shading reduces the light intensity, which leads to changes in the morphology, physiology, biomass, grain yield and quality of crops. Finally, shading stress delays flowering and decreases biomass and grain yield. Because photosynthesis is associated with dry matter accumulation, and light is known to limit carbon accumulation and nitrogen content, understanding these processes in weeds may provide insight as to their effects on crop production, help to predict their occurrence, and ultimately provide the needed information for their management.
Materials and Methods: In order to evaluate foxtail millet competition with pigweed at different levels of radiation and nitrogen, two separate experiments in split plot arranged in randomized complete block design with three replications were conducted in 2015 at the Research Farm of Birjand University. Texturally, the soil was loam, with 8.16 pH, 0.03% total N, 12 ppm available P and 250 ppm available K. The experiment was laid out in a split-plot design with three replications having three shade levels (0, 41 and 75% shade) in main plot and three pigweed density (0, 12 and 24 plant per meter square) in subplots in two separate experiments, one under nitrogen application and the other without it. In 0% shade treatment, sunlight was allowed to fall over the millet and pigweed without any barrier. In 41% and 75% treatments, the light levels in the form of PAR were reduced using sheds nets. At the end of growth stage millet traits including plant height, spike length, peduncle length, stem diameter, number of leaf, lodging, grain yield and biomass and pigweed traits such as plant height, number of Lateral branches, number of seed per plant and biomass were measured. Data analyses were performed using two-way analysis of variance (ANOVA) by SAS 9.1 software. Means of treatments were compared between nitrogen, shade treatments and pigweed densities according to protected least significance differences (LSD) test at the 5% level.
Results and Discussion: Nitrogen had a significant effect on all millet traits except for peduncle length and biomass and also on pigweed height. Nitrogen led to significant increase in plant height, lodging percentage, number of leaf, spike length and grain yield of millet and also pigweed height. Shading had a significant (P < 0.01) influence on millet lodging, spike length, stem diameter and grain yield but no significant effects were observed on number of leaf per plant, plant height, peduncle length and biomass. Shading at level of 75% increased millet lodging and its biomass and grain yield. With shading stress at its highest level, grain yield was significantly (P < 0.01) reduced by 61% from 3.70 to 1.44 ton per ha. Shading significantly (P < 0.01) increased pigweed height and reduced its number of seeds (P < 0.05), number of stem and biomass (P < 0.01). The effect of pigweed density on grain yield (P < 0.05) and plant height and stem diameter was significant (P < 0.01). The effect of pigweed density was also significant (P < 0.01) on pigweed height, its number of stem, number of seed and biomass. Pigweed density of 24 plants per square meter led to 21% reduction in millet grain yield relative to control. However, the interaction between nitrogen and pigweed density on millet traits was limited, and only significantly (P < 0.05) affected stem diameter and grain yield. The interaction between nitrogen, shading and pigweed density also significantly (P < 0.05) affected millet biomass.
Conclusions: This research provides information on how pigweed and foxtail millet respond to reduced radiation and low nitrogen environments. Under low-radiation environments, pigweed produced less seeds that would limit the replenishment of the next year’s seed bank. Therefore, production practices such as narrow rows that reduce radiation availability would be helpful in reducing pigweed infestations. Once a dense canopy is formed, vegetative growth and the reproductive potential of pigweed seedlings are severely restricted. A uniform dense crop canopy is of paramount importance in developing an integrated approach to control this weed because any gaps in the canopy allowing light penetration will result in a rapid weed growth and prolific seed production. Further, nitrogen deficiency seems to decrease weed competition ability and seed production leading to less infestations.

کلیدواژه‌ها [English]

  • Interference
  • morphological traits
  • Shading
  • yield
1- Abouziena H.F., El-Karmany M.F., Singh M., and Sharma S.D. 2007. Effect of nitrogen rates and weed control treatments on maize yield and associated weeds in sandy soils. Weed Technology, 21:1049-1053.
2- Ahmadinezhad R., Najafi N., Aliasgharzad N., and Oustan S.H. 2013. Effects of Organic and Nitrogen Fertilizers on Water Use Efficiency, Yield and the Growth Characteristics of Wheat (Triticum aestivum cv. Alvand). Water and Soil Science, 23(2):177-194. (In Persian with English abstract)
3- Andreasen C., Litz A.S., and Streibig J.C. 2006. Growth response of six weed species and spring barely (Hordeum Vulgare) to increasing levels of nitrogen and phosphorus. Weed Research, 46:503-512.
4- Arabi M., and Saffari M. 2014. The Effect of Weeding and Plant Density on Yield and Yield Components of Forage Sorghum Cultivars. Journal of Agronomy Knowledge, 5(10):39-52. (in Persian with English abstract)
5- Asadi E., Haghnia G.H., Lakzian A., and Maftoun M. 2014. Effect of Silicon and Nitrogen different quantities on morphology characteristics, yield and yield components of two varieties of wheat. Agronomy Journal (Pajouhesh & Sazandegi), 103:167-178. (in Persian with English abstract)
6- Asadi S., Inehband A., and Rahnama Ghahfarkhi A. 2013. Study of response of wheat yield to competitive stress and different levels of nitrogen. Iranian Journal of Field Crops Research, 11(2):365-376. (in Persian)
7- Blackshaw R. E., Molnar L.J., and Janzen H.H. 2004. Nitrogen fertilizer timing and application method affect weed growth and competition with spring wheat. Weed Science, 52:614-622.
8- Blackshaw R.E., Brandt R.N. 2008. Nitrogen fertilizer rate effect on weed competitiveness is species dependent. Weed Science, 56:743-747.
9- Burgos N.R., Norman R.J., Gealy D.R., and Black H. 2006. Competitive N uptake between rice and weedy rice. Field Crops Research, 99(2-3):96-105.
10- Chamani Asghari T., Mahmoudi S., Rashid Mohassel M.H., and Zamani Q. 2011. Effect of nitrogen on wild oat (Avena fatua) and wheat (Triticum aestivum) at the vegetative stage. Iranian Journal of Field Crops Research, 9(1):131-138. (in Persian)
11- Chauhan B.S. 2013. Shade reduces growth and seed production of Echinochloa colona, Echinochloa crus-galli, and Echinochloa glabrescens. Crop Protection, 43:241- 245.
12- De Sousa N., Griffiths J.T., and Swanton C.J. 2003. Predispersal seed predation of redroot pigweed (Amaranthus retroflexus L.). Weed Science, 51:60-68.
13- Dwyer L.M. 2003. Row spacing and fertilizer nitrogen effects on Plant growth and grain yield of maize. Canadian Journal of Plant Science, 83:241-248.
14- Eradatmand Asli D., and Jamasebi N. 2013. Effect of shading on remobilization of dry matter, yield and yield components of rice varieties. Plant and ecosystem, 9(34):93-105. (in Persian)
15- Evans S.P., Knezevic S.Z., Lindquist J.L., Shapiro C.A., and Blankenship E.E. 2003. Nitrogen application influence the critical period for weed control in corn. Weed Science, 51:408-417.
16- Gibson K.D., Fischer A.J., and Foin T.C. 2004. Compensatory responses of late watergrass (Echinochloa phyllopogon) and rice to resource limitations. Weed Science, 52:271-280.
17- Grabouski P.H. 1971. Selective control of weeds in Proso Millet with herbicides. Weed Science, 19(3):207-209.
18- Hager A.G., Wax L.M., Stoller E.W., Bollero G.A. 2002. Common waterhemp (Amaranthus rudis) interference in soybean. Weed Science, 50:607-610.
19- Harbur M., and Owen D.K. 2004. Light and growth rate effects on crop and weed responses to nitrogen. Weed Science, 52:578-583.
20- Hatami H., Inehband A., Azizi M., and Dadkhah A. 2009. Effect of N fertilizer on growth and yield of soybean at North Khorasan. Electronic Journal of Crop Production, 2(2):25-42. (in Persian with English abstract)
21- Horak M.J., Peterson D.E., Chessman D.J., and Wax L.M. 1994. Pigweed identification: a Pictoral guide to the common pigweeds of the Great Plains. 12 pp.
22- Izadi darbandi E., Rashed Mohasel M.H. and Nasiri Mahalati M. 2003. Study on competition effects of redroot pigweed (Amaranthus retroflexus L.) and barnyardgrass (Echinochloa crus-galli) on yield of bean (Phaseolus vulgaris L.). European Journal of Agronomy, 1:13-23.
23- Izadi F., Bagheri A.R., and Miri H.R. 2012. The effect of nitrogen and weeds interference on millet (Panicum miliaceum) yield and yield components. Journal of Plant Ecophysiology, 5(12):85-94. (In Persian with English abstract)
24- Kazemi H. 1995. Private Agriculture. Volume I: Cereals. Center of University Press, Tehran.
25- Kusaka M., Lalusin A.G., and Fujimura T. 2005. The maintenance of growth and turgor in pearl millet (Pennisetum glaucum L. Leeke) cultivars with different root structures and osmo-regulation under drought stress. Plant Science, 168:1-14.
26- Li H., Jiang D., Wollenweber B., Dai T., and Cao W. 2010. Effects of shading on morphology, physiology and grain yield of winter wheat. European Journal of Agronomy, 33(4):267-275.
27- Mahoney K.J. and Swanton C.J. 2008. Exploring Chenopodium album adaptive traits in response to light and temperature stresses. Weed Research, 48:552-560.
28- Mehrabanian M., and Farahbakhsh, A.N. 2011. Weed competition of rye with wheat, in relation with application of nitrogen fertilizer. 1th National Conference Modern Topic in Agriculture. November 6-1.
29- Moosavi S.K., Feizian M., Ahmadi A.R. 2012. Effect of nitrogen fertilizer on morphological characteristics and production of winter wheat in dryland conditions of Lorestan Province. Iranian Journal of Field Crops Research, 10(3):532-545. (in Persian)
30- Mosavifar B.E., Behdani M.A., Jamialahmadi M., and Mosavifar S.A. 2011. Spring safflower genotypes reaction to shading on head and surrounding leaves in Birjand. Iranian Journal of Field Crops Research, 9(2):265-272. (in Persian)
31- Nasirinejad M., Bagheri A., and Jafari A. 2012. Evaluation the effect of C3 and C4 weeds and different levels of nitrogen on growth and biomass production of sunflower (Heliantheus annus L.). Journal of Plant Ecophysiology, 4(2):14-24. (In Persian with English abstract)
32- Shahsawari N., and Saffari M. 2005. The effect of different levels of nitrogen on the function and elements of the varieties of wheat in Kerman. Journal of Research and Construction, 66:82-87. (in Persian with English abstract)
33- Singh B.K., and Jenner C.F. 1984. Factors controlling endosperm cell number and grain dry weight in wheat: Effect of shading on intact plants and of variation in nutritional supply to detached, cultured ears. Australian Journal of Plant Physiology, 11:151–163.
34- Smil V. 2000. Feeding the World: A Challenge for the Twenty-first Century. Springer, Berlin.
35- Soleymani F., Ahmadvand G., and Saadatian B. 2011. The effect of nitrogen levels and wild mustard densities on yield and economic threshold of canola. Electronic Journal of Crop Production, 4(3):85-102. (in Persian with English abstract)
36- Steinmaus Scott J., and Robert Norris F. 2002. Growth analysis and canopy architecture of velvetleaf grown under light conditions representative of irrigated Mediterranean-type agroecosystems. Weed Science, 50:42-53.
37- Tavasoli A., Ghanbari A., Ahmadi M.M., and Heydari M. 2010. Effect of manure and chemical fertilizers on forage and grain yield millet (Panicum miliaceum) and beans (Phaseolus vulgaris) in mixed culture. Iranian Journal of Field Crops Research, 8(2):203-212. (in Persian)
38- Tsubo M., Walker S., and Mukhala E. 2001. Comparisons of radiation use efficiency of mono-/inter-cropping systems with different row orientations. Field Crops Research, 71:17-29.
39- Varga P., Sardi K., and Beres I. 2002. Effect of N imbalances on shoot and root growth of corn and velvet leaf. Plant physiol. 46:213-214.
40- Yaghobi S.R., AghaAlikhani M., Ghalavand A., and Zand E. 2011. Evaluation of important growth parameters of Lepyrodiclis (Lepyrodiclis holosteoides Fenzl.) under different light densities and nitrogen rates. Iranian Journal of weed Science, 7(1):31-43. (in Persian with English abstract)
41- Yaghoobi S.R., Aghaalikhani M., and Zand E. 2010. Morphological and structural changes of Redroot pigweed in competition with sunflower under different time of emergence. Iranian Journal Crop Science, 13:32-48. (In Persian with English abstract)
42- Zamani G., and Koocheki A. 1995. The effect of planting pattern and density on light interception, yield and yield components of maize cultivar. Agricultural Sciences and Technology Journal, 2(2):17-30. (In Persian with English abstract)
43- Zand A., Rahimian H., Kochaki A., Khalghany J., Mousavi S.K., and Ramezani K. 2004. weeds Ecology (management applications). Jihad Daneshgahi of Mashhad Publications.
CAPTCHA Image